Tính tích
(1-1/2).(1-1/3).(1-1/4)..............(1-1/999).(1-1000)
tính tích: P=(1-1/2).(1-1/3).(1-1/4).........(1-1/999).(1-1/1000)
\(P=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).................\left(1-\frac{1}{999}\right).\left(1-\frac{1}{1000}\right)\)
\(P=\frac{-1}{2}.\frac{-2}{3}.......................\frac{-998}{999}.\frac{-999}{1000}\)
\(P=\frac{\left(-1\right).\left(-2\right)...............\left(-998\right).\left(-999\right)}{2.3........................999.1000}\)
\(P=\frac{-1}{1000}\)
A=1/1×2+1/3×4+1/4×5+...1/999×1000
B=1/501×1000+1/502×999+...+1/999×502+1/1000×501
Tính A/B
tính B=(2016/1000+2016/999+2016/998+...+2016/501)/(-1/1*2+/-1/3*4+-1/5*6+...+-1/999*1000)
\(B=\frac{\frac{2016}{1000}+\frac{2016}{999}+...+\frac{2016}{501}}{\frac{-1}{1.2}+\frac{-1}{3.4}+...+\frac{-1}{999.1000}}=\frac{2016.\left(\frac{1}{1000}+\frac{1}{999}+...+\frac{1}{501}\right)}{-\left(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{999.1000}\right)}\)
\(=\frac{2016.\left(\frac{1}{1000}+\frac{1}{999}+...+\frac{1}{501}\right)}{-\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{999}-\frac{1}{1000}\right)}\)
\(=\frac{2016\left(\frac{1}{1000}+\frac{1}{999}+...+\frac{1}{501}\right)}{-\left[\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{999}+\frac{1}{1000}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{1000}\right)\right]}\)
\(=\frac{2016.\left(\frac{1}{1000}+\frac{1}{999}+...+\frac{1}{501}\right)}{-\left[\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{999}+\frac{1}{1000}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{500}\right)\right]}\)
\(=\frac{2016.\left(\frac{1}{1000}+\frac{1}{999}+...+\frac{1}{501}\right)}{-\left(\frac{1}{501}+\frac{1}{502}+\frac{1}{503}+....+\frac{1}{999}+\frac{1}{1000}\right)}=\frac{2016}{-1}=-2016\)
Vậy B = - 2016
Bạn Xyz cho mik hỏi ở phần mẫu số tại sao lại có -2*(1/2+1/4+...+1/1000) vậy? Nó ở đâu ra thế?
tính tích: P=(1-1/2).(1-1/3).(1-1/4).........(1-1/999).(1-1/1000)
Giúp mik nhé
Mik đang cần gấp
\(P=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{999}\right)\left(1-\frac{1}{1000}\right)\)
\(P=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{998}{999}\cdot\frac{999}{1000}\)
\(P=\frac{1\cdot2\cdot3\cdot4\cdot...\cdot999}{2\cdot3\cdot4\cdot5\cdot...\cdot1000}\)
\(P=\frac{1}{1000}\)
\(P=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times...\times\frac{998}{999}\times\frac{999}{1000}\)
P=1/1000
_Kudo_
\(P=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)\cdot.....\cdot\left(1-\frac{1}{999}\right)\left(1-\frac{1}{1000}\right)\)
\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot....\cdot\frac{998}{999}\cdot\frac{999}{1000}\)
\(=\frac{1\cdot2\cdot3\cdot....\cdot998\cdot999}{2\cdot3\cdot4\cdot....\cdot999\cdot1000}=\frac{1}{1000}\)
Vậy \(P=\frac{1}{1000}\)
Bài 1:tính tích
a, A=(1-1/2).(1-1/3).(1-1/4)...(1.1/999).(1-1/1000)
b, B= 3/4.8/9.1/16...2499/2500
\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{1000}\right)=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{999}{1000}=\frac{1.2.3...999}{2.3.4...1000}=\frac{1}{1000}\)
\(B=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}....\frac{2499}{2500}=\frac{3.8.15...2499}{4.9.16....2500}=\frac{1.3.2.4.3.5....49.51}{2.2.3.3.4.4...50.50}=\frac{\left(1.2.3...49\right).\left(3.4.5...51\right)}{\left(2.3.4...50\right).\left(2.3.4...50\right)}\)
\(\frac{1.51}{50.2}=\frac{51}{100}\)
a. \(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)....\left(1-\frac{1}{999}\right)\)
\(A=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot....\cdot\frac{998}{999}\)
\(A=\frac{1\cdot2\cdot3\cdot....\cdot998}{2\cdot3\cdot4\cdot....\cdot999}=\frac{1}{999}\)
Vậy \(A=\frac{1}{999}\)
\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{1000}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{999}{1000}\)
\(=\frac{1.2.3.4....999}{2.3.4....1000}\)
\(B=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}....\frac{2499}{2500}\)
\(=\frac{3.8.15....2499}{4.9.16....2500}\)
\(=\frac{1.3.2.4.3.5....49.51}{2.2.3.3.4.4....50.50}\)
\(=\frac{\left(1.2.3.4.5...49\right)\left(3.4.5....51\right)}{\left(2.3.4....50\right).\left(2.3.4...50\right)}\)
\(=\frac{1.51}{50.2}=\frac{51}{100}\)
\(=\frac{1}{1000}\)
Tính nhanh : \(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt[1]{2}+\sqrt[2]{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt[3]{4}+\sqrt[4]{5}}+...+\frac{1}{\sqrt{999}+\sqrt{1000}}+\frac{1}{\sqrt[999]{1000}+\sqrt[1000]{1001}}\)
Tính tổng: 1/1*2+1/2*3+1/3*4+...+1/999/1000+1
= (1/1 -1/2) + (1/2-1/3) + (1/3x1/4)+...+(1/999- 1/1000)
= 1/1- 1/1000
= ...[bn tự tính nhé]
k mk nha, nếu đúng
\(\text{Đề bạn bị sai thì phải ????? Đề đúng phải là }:\)
\(\frac{1}{1\text{ x }2}+\frac{1}{2\text{ x }3}+\frac{1}{3\text{ x }4}+...+\frac{1}{999\text{ x }1000}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{999}-\frac{1}{1000}\)
\(=1-\frac{1}{1000}\)
\(=\frac{999}{1000}\)
Tính tổng:1/1*2 + 1/2*3 + 1/3*4 + .....+1/999*1000 + 1
1/1x2+1/2x3+1/3x4+...
= 1/1-1/2+1/2-1/3+1/3-1/4+...
= 1-1/4
=3/4
K nhé
bạn trả lời đúng rồi nhưng giúp mình phần sau nữa nhé !
ARIGATO
1/1x2+1/2x3+...+1/999x1000+1
= 1+ (1/1-1/2+1/2-1/3+...+1/999-1/1000)
= 1 + ( 1-1/1000)
= 1 + 999/1000
= 1999/1000
K mk nhé bn
Tính tổng sau:1/1*2+1/2*3+1/3*4+...+1/999*1000+1
=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+........+\frac{1}{999}-\frac{1}{1000}+1\)
=\(\frac{1}{1}-\frac{1}{1000}+1\)
=\(\frac{1999}{1000}\)
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{999\cdot1000}+1\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{999}-\frac{1}{1000}+1\)
= \(1-\frac{1}{1000}+1\)
= \(\frac{999}{1000}+1\)
=\(\frac{1999}{1000}\)
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{999\cdot1000}+1\)
= \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{999}-\frac{1}{1000}+1\)
= \(\frac{1}{1}-\frac{1}{1000}+1\)
= \(\frac{999}{1000}+1\)
= \(\frac{999}{1000}+\frac{1000}{1000}\)
= \(\frac{1999}{1000}\)