bài 1
cho tam giác ABC có BC=10cm, các đường trung tuyến BD và CE.Chứng minh rằng: BD + CE > 15cm
Tam giác ABC có BC = 10cm, các đường trung tuyến BD và CE. Chứng minh rằng BD + CE > 15cm.
Gọi G là giao điểm của BD và CE.
Trong ∆GBC, ta có:
GB + GC > BC (bất đẳng thức tam giác)
GB = 2/3 BD (tính chất đường trung tuyến)
GC = 2/3 CE (tính chất đường trung tuyến)
Mà BC = 10 cm (gt)
⇒ BD + CE > 15 (cm).
Tam giác ABC có BC=10cm,các đường trung tuyến BD và CE. Chứng minh rằng BD+CE > 15cm.
Gọi G là giao điểm của BD và CE. Dựa theo bất đẳng thức của tam giác
Vì GB+GC>BC=10(T/C của tam giác)
=>2/3BD+2/3CE>10 cm
=>BD+CE>3/2.10=15cm(dpcm)
lớp 5B trồng được nhiều hơn lớp 5A là 5 cây. Biết rằng mỗi bạn lớp 5A trồng 3 cây thì lớp đó thừa 2 cây -> Nếu mỗi bạn lớp 5B trồng 3 cây thì lớp đó thừa 7 cây.
Vẽ sơ đồ cho lớp 5B :
3 phần + 7 cây
=
4 phần - 38 cây
Từ đó suy ra một phần có giá trị 38 + 7 = 45, chính là số h/s của lớp 5B = số h/s của lớp 5A
số cấy của lớp 5a là 3*45-2 =133 cấy
số cây lớp 5b là 3*45-7= 128
Gọi G là giao điểm của BD và CE. Theo bất đẳng thức trong tam giác GBC:
GB + GC > BC = 10cm
=> 2/3BD + 2/3CR > 10cm
=> BD + CE > 3/2. 10cm = 15cm
tam giac ABC có BC=10cm các đường trung tuyến BD và CE , chứng minh BD+CE>15cm
Cho tam giác ABC có BC = 10cm. Các đường trung tuyến BD và CE có độ dài theo thứ tự bằng 9cm và 12 cm. Chứng minh rằng: BD ⊥ CE
Ai giúp mình với mình sắp phải nộp bài rồi
bài này là bài 94 nâng cao và các chuyên đề toán 7
gọi G là giao điểm của BD và CE
=>G là trọng tâm cua tam giac ABC
=>GB=2/3 BD=6,GC=2/3CE=8
ta có GB^2+GC^2=6^2+8^2=100
màBC^2=10^2=100
nênGB^2+GC^2=BC^2
=>tam giac GBC vuong tai G(dinh li py ta go dao)
=> đpcm
B1.Cho tam giác ABC có BC=10cm .Các đường trung tuyến BD=9cm và CE=12cm.
CM \(BD\perp CE\)
B2. Cho tam giác ABC có độ dài các đường trung tuyến AM=15cm; BD=9cm;CE=12cm.
Tính độ dài các cạnh của tam giác ABC
mọi người ai giúp mình vs giải chi tiết nha
tam giác ABC có BC = 10cm, các đường trug tuyến BD và CE . Chứng minh rằng BD+CE>15 cm
1 / Cho tam giác ABC có BC = 10cm . Các đường trung tuyến BD và CE có độ dài theo thứ tự là 9cm và 12cm .Cm : BD vuông góc CE
2 / Cho tam giác ABC ,đường trung tuyến BD . Trên tia đối của tia DB lấy điểm E sao cho DE = BD. Gọi M và N lần lượt là trung điểm của BC và CE . Gọi I , K theo thứ tự giao điểm của AM , AN với BE . Chứng minh rằng : BI = IK = KE
1.gọi giao của BD và CE là O
ta có: OB=2/3 BD=> OB=2/3 x 9=6
ta có: OC=2/3 EC=> OC=2/3 x12=8
ta có:\(OC^2+OB^2=6^2+8^2=36+64=100\)
\(BC^2=10^2=100\)
=> tam giác OBC vuông tại O=> BD_|_CE tại O
1.gọi giao của BD và CE là O
ta có: OB=2/3 BD=> OB=2/3 x 9=6
ta có: OC=2/3 EC=> OC=2/3 x12=8
ta có:$OC^2+OB^2=6^2+8^2=36+64=100$OC2+OB2=62+82=36+64=100
$BC^2=10^2=100$BC2=102=100
=> tam giác OBC vuông tại O=> BD_|_CE tại O
Tam giác ABC, có BC=10cm. Các đường trung tuyến BD và CE có độ dài theo thứ tự bằng 9cm và 12cm. Chứng minh rằng BD vuông góc vs CE
Tam giác ABC có BC = 10cm, các đường trung tuyến BD và CE. Chứng minh rằng BD + CE > 15cm.
Giải:
Gọi giao điểm giữa BD và CE là G
Ta có: \(GC=\dfrac{2}{3}EC\)
\(GB=\dfrac{2}{3}BD\)
\(\Rightarrow GC+GB=\dfrac{2}{3}EC+\dfrac{2}{3}BD\)
\(\Rightarrow GC+GB=\dfrac{2}{3}\left(EC+BD\right)\)
Mà \(GC+GB>BC\)
\(\Rightarrow\dfrac{2}{3}\left(EC+BD\right)>BC=10\left(cm\right)\)
\(\Rightarrow EC+BD>15\left(cm\right)\left(đpcm\right)\)
Vậy...
Gọi G là giao điểm của BD và CE. Theo bất đẳng thức trong tam giác GBC:
GB + GC > BC = 10 cm
\(\Rightarrow\dfrac{2}{3}BD+\dfrac{2}{3}CE>10cm\)
\(\Rightarrow BD+CE>\dfrac{3}{2}.10cm=15\left(cm\right)\).