Bài 1: Cho tứ giác ABCD có 2 đường chéo vuông góc nhau tại I và góc ABD = góc ACD. Gọi M là trung điểm của CD. CMR MI vuông góc với AB? ( Mình sẽ tick cho nhé)
tứ giác abcd có hai đường chéo vuông góc tại i và góc abd = góc acd. gọi m là trung điểm cd. chứng minh mi vuông góc ab
Bài 1: Tứ giác ABCD có hai đường chéo vuông góc tại I và Góc ABD=Góc ACD. Gọi M là trung điểm của CD. Chứng minh rằng MI vuông góc với AB
cho tứ giác ABCD có 2 đường chéo AC,BD vuông góc với nhau. gọi M,N,L lần lượt là trung điểm của AB,AD và đường chéo AC. Từ M kẻ đường thẳng vuông góc với CD cắt AC tại H.
CMR H là trực tâm của tam giác MNL
bài zì mà khó quá đi àaaaaaaaaaaaaaaaa
Giair giùm mình vài bài toán mình :) mình hứa sẽ tích cho các bạn thật nhiều
1.Cho tam giác ABC.Qua D là trung đểm của cạnh BC ,kẻ một đường thẳng vuông góc với đường phân giác của góc A nó cắt AB ở M và AC ở N. cmr : BM=CN
2.Vẽ ra phía ngoài 2 tam giác ABC các tam giác ABD và BCE cùng vuông cân tại B gọi M là trung điểm của AC.Chứng minh rằng DE=2BM
3. Cho tam giác ABC có góc A từ.Trong góc A vẽ các đoạn thẳng AD,AE sao cho AD vuông góc và bằng AB,AE vuông góc và bằng AC .Gọi M là trung điểm của DE .CMR : AM \(\perp\) BC
4.Vẽ ra ngoài tam giác ABC các tam giác ABD vuông cân tại B,ACE vuông cân tại C,Gọi M là trung điểm của DE.Tam giác BMC là tam giác gì ?? Vì sao?
5.Cho hình thang cân ABCD (AB\(//\) CD) có hai đường chéo AC và BD vuông góc với nhau.CMR chiều cao BH bằng đường Trung bình MN
Còn nhiều bài lắm các bn làm giúp mình nha
, Tự vẽ hình và ghi giả thiết kết luận (mình không biết vẽ hình trên máy -_-")
Giải : Từ giả thiết ta có
D là trung điểm của AB và MO
,E là trung điểm của AC và ON
=> ED là đường trung bình của cả hai tam giác ABC và OMN
Áp dụng định lý đường trung bình vào tam giác trên ,ta được
\(\hept{\begin{cases}AD//BC,DE//MN\\DE=\frac{1}{2}BC,DE=\frac{1}{2}MN\end{cases}}\Rightarrow\hept{\begin{cases}MN//BC\\MN=BC\end{cases}}\)
Tứ giác MNCB có hai cạnh đối song song và bằng nhau nên nó là hình bình hành
Từ từ ,hình như mình làm nhầm đề :) Để mình làm lại đã rồi trả lời bn sau nhé!!!!!@@
Bài 1 : tự viết giả thiết kết luận và vẽ hình
Do N là trung điểm của BC theo giả thiết nên chọn BC làm một đường chéo.Vẽ thêm điểm E sao cho D là trung điểm của ME thì tứ giác BMCE có hai đường chéo chắt nhau tại trung điểm của mỗi đường nên nó là hình bình hành
=> \(BM//CE\) và \(BM=CE\)
Ta có : MN \(\perp\) với hai tia phân giác của góc A nên tam giác AMN cân ở A.
Áp dụng tính chất về góc của tam giác cân AMN ,tính chất của hai góc đối đỉnh của ở N và tính chất góc so le của BM // CE ,ta được
\(\hept{\begin{cases}\widehat{M1}=\widehat{N2},\widehat{N1}=\widehat{N2}\\\widehat{M1}=\widehat{E1}\end{cases}}\Rightarrow\widehat{N1}=\widehat{E1}\Rightarrow CE=CN\)
(Vì trong một tam giác đối diện với hai góc bằng nhau là 2 cạnh bằng nhau)
Từ (1) và (2) => BM=CN (đpcm )
Cho tứ giác ABCD có 2 đường chéo vuông góc với nhau. Gọi M,N thứ tự là trung điểm AB, AD. CMR: đường thẳng đi qua M vuông góc với CD, đường thẳng đi qua N vuông góc với BC và đường chéo AC đồng quy
Cho tứ giác ABCD nội tiếp đường tròn tâm o các đường chéo AC và BD vuông góc với nhau tại I gọi M là trung điểm của BC chứng minh rằng MI vuông góc với AD
Gọi K là giao của MI và AD
góc CIM=góc IAM+góc IMA
ΔBIC vuông tạiI có IM là trung tuyến
nên góc CIM=góc ICM=góc ACB
=>góc KAM+góc AMK=góc DAC+góc IAM+góc IMA
=90 độ
=>MI vuông góc AD
cho tứ giác abcd có hai đường chéo ab vuông góc cd. gọi m,n là trung điểm của ab và ad. kẻ me vuông góc với cd tại e và nf vuông góc với bc tại f. chứng minh mnef nội tiếp
Cho tứ giác ABCD có hai đường chéo vuông góc. Gọi M,N lần lượt là trung điểm của AB, AD. CMR: đường thẳng qua M, vuông góc với CD; đường thẳng qua N, vuông góc với BC và đường thẳng AC đồng quy
Bài 1: Cho hình thanh ABC ( AB//CD) trong đó 2 đường phân giác của các góc A và B cắt nhau tại điểm K thuộc đáy CD. CMR: tổng 2 cạnh bên = đáy CD của hình thang
Bài 2: Cho tam giác ABC .Trên tia đối của tia AB lấy D sao cho AD=AC. Trên tia đối của tia AC láy điểm E sao cho AE=AC. CMR: BCDE là hình thang
Bài 3: Cho tứ giác ABCD có CB=CD,đường chéo BD là tia pg của góc ADC. CMR: ABCD là hình thang
Bài 4: Cho hình thang ABCD ( AB//CD;AB <CD) ,các tia pg của các góc A và D cắt ngau tại I,các tia pg của các góc B và C cắt nhau tại J
a) CMR: AI vuông góc với DJ và BJ vuông góc với CJ
b) Gọi E là gđ cỉa AI và BJ,giả sử E thuocj cạnh CD.CMR: CD=AD+BC
giúp mình với m.n ơi,mình cần gấp,vẽ hình,ghi rõ dùm mình
Bài 3:
Xét ΔCBD có CD=CB
nên ΔCBD cân tại C
Suy ra: \(\widehat{CDB}=\widehat{CBD}\)
mà \(\widehat{CDB}=\widehat{ADB}\)
nên \(\widehat{ADB}=\widehat{DBC}\)
mà hai góc này ở vị trí so le trong
nên AD//BC
hay ADCB là hình thang