Cho A = dcba
Chứng minh rằng nếu (a + 2b) chia hết cho 4 thì A chia hết cho 4.
Cho x bằng dcba
Chứng minh rằng: Nếu x chia hết cho 8 thì (4c+2b+a) chia hết cho 8
Ta có x=dcba => x=1000d + 100c + 10b +a
=1000d + 96c + 8b + (4c + 2b + a)
Mà 1000 chia hết cho 8 =>1000d chia hết cho 8 (1)
96 chia hết cho 8 => 96c chia hết cho 8 (2)
8 chia hết cho 8 => 8b chia hết cho 8 (3)
x=dcba chia hết cho 8 (4)
Từ (1), (2), (3) và (4) =>(4c + 2b + a) chia hết cho 8 (đpcm)
Bài 5: Chứng minh rằng:
a, a thuộc Z thì a( a+1 )( a+2 ) chia 3
b, Nếu ( a-b ) chia hết cho 4 thì ( a - 7b ) chia hết cho 4
c, Nếu a chia hết cho 4; b thuộc Z thì ( -2a - 8b ) chia hết cho 8
d, Nếu a,b thuộc Z; ( a + 2b + 3c ) chia hết cho 5 thì ( a + 3b + 7c ) chia hết cho 5
Cho N = dcba chứng tỏ rằng
nếu (a+2b) chia hết cho 4 thì N chia hết cho 4
Cho số tự nhiên A= dcba. CTR:
a, Nếu (a+2b) chia hết cho 4 thì A chia hết cho 4 và ngược lại
b, Nếu (a+2b+4c) chia hết cho 8 thì A chia hết cho 8 và ngược lại
chứng minh rằng
a) nếu 20a + 11b chia hết cho 17 thì 83a + 38b chia hết cho17
b) nếu (2a +3b +4c) chia hết cho 7 thì ( 13a + 2b - 2c ) chia hết cho 7
c) nếu a +4b chia hết cho 13 thì 10a + b chia hết cho 13
d) nếu a + 2b chia hết cho 5 thì 3a - 4b chia hết cho 5
e) nếu a - 5b chia hết cho 17 thì 10a + b chia hết cho 17
Câu trả lời hay nhất: + ta chứng minh a,b,c có ít nhất một số chia hết cho 3
giả sử cả 3 số trên đều không chia hết cho 3
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1)
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn
Vậy có ít nhất 1 số chia hết cho 3
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn
vậy có ít nhất 1 số cgia hết cho 4
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5)
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3
=> phải có ít nhất 1 số chia hết cho 5
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60
a+5b ⋮ 7
=> 3(a+5b) ⋮7
=> 3a+15b⋮7
=> 3a+15b +7a -14b⋮7
=> 10a+b⋮7
chúc bn hok tốt ^_^
Ta có : 83a + 38b chia hết cho 17
Suy ra : 17a +83a + 38b + 17b chia hết cho 17
Suy ra 100a +55b chia hết cho 17
Suy ra 5×(20a +11b ) chia hết cho 17
Suy ra 20a +11b chia hết cho 17 ( do5 không chia hết cho 17)
Vậy 83a +38b chia hết cho 17 thì 20a +17b chia hết cho 17
Chứng minh rằng:
a) Nếu 3a + 2b chia hết cho 17 thì 10a + b chia hết cho 17
b) Nếu a - 5b chia hết cho 17 thì 10a + b chia hết cho 17
Chứng minh rằng : Nếu (a+2b) chia hết cho 5 thì (4a+3b) chia hết cho 5
Cho N = dcba (gạch trên đầu dcba) , chứng minh rằng:
a/ N chia hết cho 4 <=> a+2b chia hết cho 4
b/ N chia hết cho 8 <=> a+2b+4c chia hết cho 8
c/ N chia hết cho 16 <=> a+2b+4c+8d chia hết cho 16 (b chẵn)
Bạn vào Wed:http://olm.vn/hoi-dap/question/374984.html
Cho a,b thuộc N, chứng minh rằng:
a. Nếu a+ 2.b chia hết cho 5 thì a.a + 4.b chia hết cho 5
b. Nếu 3.a - 4.b chia hết cho 5 thì a + 2.b chia hết cho 5