chờ A ( 2/3 ; 1 ; 10/7 ; 17/9 ; 26/11 ; 37/13 ; 10/3 ) viết tập hợp sau bằng phương pháp nêu ra tính chất đặc trưng
Chờ: A=1+3+3^2+3^3+....+3^100.,chứng tỏ rằng A chia hết cho 26
A = 1 + 3 + 3^2 + 3^3 + ... + 3^100
A = ( 1 + 3 + 3^2 + 3^3 + 3^4 + 3^5 ) + ( 3^6 + 3^7 + 3^8 + 3^9 + 3^10 + 3^11 ) + ... +( 3^89 + 3^90 + 3^91 + 3^92 + 3^93 + 3^94 + 3^95) + ( 3^96 + 3^97 + 3^98 + 3^99 + 3^100 )
A = ( 1 + 3 + 3^2 + 3^3 + 3^4 + 3^5 ) + 3^6( 1 + 3 + 3^2 + 3^3 + 3^4 + 3^5 ) + ... + 3^89( 1 + 3 + 3^2 + 3^3 + 3^4 + 3^5 ) + ( 3^96 + 3^97 + 3^98 + 3^99 + 3^100 )
A = 364 + 3^6 . 364 + ... + 3^89 . 364 + ( 3^96 + 3^97 + 3^98 + 3^99 + 3^100 )
Chứng minh nốt phần còn lại là xong .
chờ A(x)=x+x^2+x^3+...+x^100.Tính A(1/2) giải chi tiết cho mình nha
Sửa lại:A.x=x2+x3+...+x101
=>A.x-A=(x2+x3+...+x101)-(x+x2+...+x100)
=>A(x-1)=x101-x
=>A=\(\dfrac{x^{101}-x}{x-1}\)
Thay x=\(\dfrac{1}{2}\)vào A ta có:
A=\(\dfrac{\left(\dfrac{1}{2}\right)^{101}-\dfrac{1}{2}}{\dfrac{1}{2}-1}=\dfrac{\left(\dfrac{1}{2}\right)^{101}-\dfrac{1}{2}}{-\dfrac{1}{2}}=1-\left(\dfrac{1}{2}\right)^{100}=\dfrac{2^{100}-1}{2^{100}}\)
Ta có:A.x=x2+x3+...+x101
=>A.x-A=(x2+x3+...+x101)-(x+x2+...+x100)
=>A(x-1)=x101-x
=>A=\(\dfrac{x^{101}-x}{x-1}\)
Thay x=\(\dfrac{1}{2}\)
=>A=\(\dfrac{\left(\dfrac{1}{2}\right)^{101}-\dfrac{1}{2}}{\dfrac{1}{2}-1}=\dfrac{\left(\dfrac{1}{2}\right)^{101}-\dfrac{1}{2}}{-\dfrac{1}{2}}=1-\left(\dfrac{1}{2}\right)^{101}\)
chờ a,b thỏa mãn a3-3ab2=19; b3-3a2b=98
tính M=a2+b2
\(chờ A =(2*n+1/n+3) -(n-5/n+3) tìm các số nguyên n để A nhận giá trị nguyên\)
Chờ a,b,c>0 và a+b+c=6
CMR \(\frac{ab}{\sqrt{c^2+3}}+\frac{bc}{\sqrt{a^2+3}}+\frac{ca}{\sqrt{b^2+3}}\le\frac{3}{2}\)
bn xem lại cái đề nhé, với a = b = c = 2 thì ko đúng đâu
chờ a,b,c là 3 số thực dương thỏa mãn : a2 + 2b2 < hoặc bằng 3c2. cmr: 1/a +2/b > hoặc bằng 3/c
áp dụng BĐT bunhia... ta có
\(\left(a+2b\right)^2=\left(1.a+\sqrt{2}\sqrt{2}b\right)^2\le\left(1+2\right)\left(a^2+2b^2\right)\le3.3c^2=9c^2\)
\(\Rightarrow a+2b\le3c\)
áp dụng cosi ta có
\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge3\sqrt[3]{xyz}.3\sqrt[3]{\frac{1}{xyz}}=9\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)
áp dụng BDT trên ta có \(\frac{1}{a}+\frac{2}{b}=\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\ge\frac{9}{a+b+b}=\frac{9}{a+2b}\ge\frac{9}{3c}=\frac{3}{c}\left(đpcm\right)\)
dấu = xảy ra khi a=b=c
Chờ a, b là 2 số tự nhiên ko nguyên tố cùng nhau, a= 4n+3 , b=5n+1 [n thuộc N]. Tìm ước chung của a,b.
chờ a,b,c là độ dài 3 cạnh của 1 tam giác và a<=b<=c. CMR(a+b+c)^2<=9bc
\(\left(a+b+c\right)^2\le\left(2b+c\right)^2\)
Xét hiệu:
\(\left(2b+c\right)^2-9bc=4b^2-5bc+c^2=\left(b-c\right)\left(4b-c\right)\le0\)
Dễ thấy b - c < 0
\(c< a+b\le2b\)
=> 4b - c > 0
Q.E.D dấu "=" xảy ra khi a = b = c
chờ a,b,c,đ ka 0 thỏa mãn b^2=ac ;c^2=bd và b^3+c^3+d^3 khác 0 CM a63+b^3+c^3/b^3+c^3+d^3=c/d