A=(1-1/2)x(1-1/3)x(1-1/4)x...(1-1/2017)x(1-1/2018)
tinh :
A= ( 1-1/2) x ( 1-1/3) x ( 1-1/4) +.....+ ( 1-1/2017) x ( 1- 1/2018)
A = (1 - 1/2) x (1 - 1/3) x (1 - 1/4) + ... + (1 - 1/2017) x (1 - 1/2018)
<=> A = 1/2 x 2/3 x 3/4 x ... x 2016/2017 x 2017/2018
<=> A = \(\dfrac{1\times2\times3\times...\times2016\times2017}{2\times3\times4\times...\times2017\times2018}\)
<=> A = \(\dfrac{1}{2018}\)
@Nguyễn Linh Ly
\(A=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{2017}\right)\left(1-\dfrac{1}{2018}\right)\)\(A=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{2016}{2017}.\dfrac{2017}{2018}\)
\(A=\dfrac{1.2.3....2016.2017}{2.3.4....2017.2018}\)
\(A=\dfrac{1}{2018}\)
{1-1/2}x{1-1/3}x{1-1/4}x{1-1/5}x......x{1-1/2017}x{1-1/2018}
=\(\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}....\dfrac{2016}{2017}.\dfrac{2017}{2018}\)
\(\dfrac{1.2.3.4....2017}{2.3.4....2017.2018}\)
=\(\dfrac{1}{2018}\)
1. Cho A=\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)và B=\(\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2017}+\frac{1}{2018}\)Tính \(\left(\frac{A}{B}\right)^{2018}\)
2. Tìm x biết
a)\(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{x.\left(x+2\right)}=\frac{20}{41}\)
b)\(|x+2016|+|x+2017|+2018=3x\)
\(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{x.\left(x+2\right)}=\frac{20}{41}\)
\(\Leftrightarrow\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{20}{41}\)
\(\Leftrightarrow\frac{1}{2}.\left(1-\frac{1}{x+2}\right)=\frac{20}{41}\)
\(\Leftrightarrow1-\frac{1}{x+2}=\frac{20}{41}\div\frac{1}{2}\)
\(\Leftrightarrow1-\frac{1}{x+2}=\frac{40}{41}\)
\(\Leftrightarrow\frac{1}{x+2}=1-\frac{40}{41}\)
\(\Leftrightarrow\frac{1}{x+2}=\frac{1}{41}\)
\(\Leftrightarrow x+2=41\)
\(\Leftrightarrow x=41-2\)
\(\Leftrightarrow x=39\)
???????????????????????????????????????????????????????
99% LÀ 39
CÒN LAI LÀ ĐÁP ÁN KHÁC
Tìm x biết
a) \(\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\right).x=\frac{2018}{1}+\frac{2017}{2}+\frac{2016}{3}+...+\frac{2}{2017}+\frac{1}{2018}\)
b) \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2017}{2019}\)
\(a)\) Ta có :
\(VP=\frac{2018}{1}+\frac{2017}{2}+\frac{2016}{3}+...+\frac{2}{2017}+\frac{1}{2018}\)
\(VP=\left(\frac{2018}{1}-1-...-1\right)+\left(\frac{2017}{2}+1\right)+\left(\frac{2016}{3}+1\right)+...+\left(\frac{2}{2017}+1\right)+\left(\frac{1}{2018}+1\right)\)
\(VP=1+\frac{2019}{2}+\frac{2019}{3}+...+\frac{2019}{2017}+\frac{2019}{2018}\)
\(VP=2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}\right)\)
Lại có :
\(VT=\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\right).x\)
\(\Rightarrow\)\(x=2019\)
Vậy \(x=2019\)
Chúc bạn học tốt ~
\(b)\) \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2017}{2019}\)
\(\Leftrightarrow\)\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2017}{2019}\)
\(\Leftrightarrow\)\(2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2017}{2019}\)
\(\Leftrightarrow\)\(2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2017}{2019}\)
\(\Leftrightarrow\)\(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2017}{2019}\)
\(\Leftrightarrow\)\(2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2017}{2019}\)
\(\Leftrightarrow\)\(1-\frac{2}{x+1}=\frac{2017}{2019}\)
\(\Leftrightarrow\)\(\frac{2}{x+1}=1-\frac{2017}{2019}\)
\(\Leftrightarrow\)\(\frac{2}{x+1}=\frac{2}{2019}\)
\(\Leftrightarrow\)\(x+1=2019\)
\(\Leftrightarrow\)\(x=2019-1\)
\(\Leftrightarrow\)\(x=2018\)
Vậy \(x=2018\)
Chúc bạn học tốt ~
Tính giá trị của các biểu thức
A = 1+2+3+ ... +2018
B = 1 + 3 + 5 + ... + 2017
C = 2 + 4 + 6 + ... + 2018
D = 1 + 4 + 7 + ... + 2005
E = 1 x 2 + 2 x 3 + 3 x 4 + ... + 2000 x 2001
A = 1 + 2 + 3 + ... + 2018
= ( 1 + 2018 ) + ( 2 + 2017) + ... + ( 1009 + 1010 )
= 2019 + 2019 + ... + 2019 ( có 1009 số 2019 )
= 2019 x 1009 = 2037171
B = 1 + 3 + 5 + ... + 2017
= ( 1 + 2017 ) + ( 3 + 2015 ) + ... + ( 1007 + 1010) + 1009
= 2018 + 2018 + ... + 2018 + 1009 (có 504 số 2018)
= 2018 x 504 + 1009 = 1018081
Còn lại làm giống ý trên .
Tìm x,biết:
x+2015/5 + x+2014/6 = x+2017/3 + x+2018/2
Hướng dẫn: x+2015/5+1 + x+2014/6+1 = x+2017/3+1 + x+2018/2+1
=> (x+2020)/5=(x+2020)/6=(x+2020)/3+(x+2020)/2
=>(x+2020)(1/5+1/6)=(x+2020)(1/3+1/2)
Với x+2020=0=>x=-2020
Với x+2020 khác 0=>1/5+1/6=1/3+1/2 ,vô lí
Vậy x=-2020
A = 2017/2018 x 7/8 + 2017/2018 x 3/8 - 2017/2018 x 1/4
Ta có : A =\(\frac{2017}{2018}\)x \(\frac{7}{8}\)+ \(\frac{2017}{2018}\)x \(\frac{3}{8}\)- \(\frac{2017}{2018}\)x \(\frac{1}{4}\)
= \(\frac{2017}{2018}\) x ( \(\frac{7}{8}+\frac{3}{8}-\frac{1}{4}\))
= \(\frac{2017}{2018}\)x 1
=\(\frac{2017}{2018}\)
Vậy A= : \(\frac{2017}{2018}\)
Bài giải
\(A=\frac{2017}{2018}\text{ x }\frac{7}{8}+\frac{2017}{2018}\text{ x }\frac{3}{8}-\frac{2017}{2018}\text{ x }\frac{1}{4}\)
\(A=\frac{2017}{2018}\text{ x }\frac{1}{4}\left(\frac{7}{2}+\frac{3}{2}-1\right)=\frac{2017}{2018}\text{ x }\frac{1}{4}\text{ x }4==\frac{2017}{2018}\text{ x }1=\frac{2017}{2018}\)
tìm x biết
a, (1/1x2+1/2x3+1/5x4+...+1/99x100) X=1/1x2+2x3+3x4+...+98x99
b, X/1x3+X/3x5+X/5x7+...+X/2013x2015=4/2015
c, X+1/2015+X+2/2016=X+3/2017+X+4/2018
b) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2013.2015}\)
\(=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2013.2015}\right)\)
\(=\frac{1}{2}\left(\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{2015-2013}{2013.2015}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2013}-\frac{1}{2015}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{2015}\right)=\frac{1007}{2015}\)
Phương trình tương đương với:
\(\frac{1007X}{2015}=\frac{4}{2015}\Leftrightarrow X=\frac{4}{1007}\)
c) \(\frac{x+1}{2015}+\frac{x+2}{2016}=\frac{x+3}{2017}+\frac{x+4}{2018}\)
\(\Leftrightarrow\frac{x+1}{2015}-1+\frac{x+2}{2016}-1=\frac{x+3}{2017}-1+\frac{x+4}{2018}-1\)
\(\Leftrightarrow\frac{x-2014}{2015}+\frac{x-2014}{2016}=\frac{x-2014}{2017}+\frac{x-2014}{2018}\)
\(\Leftrightarrow x-2014=0\)
\(\Leftrightarrow x=2014\)
Tìm x biết :
[1/2 + 1/3 + .......+ 1/2019]x = 2018/1 + 2017/2 + .......+ 1/2018