Cho hình vuông ABCD gọi M Là trung điểm của BC lấy N trên CD sao cho CN=2ND.Gọi E là giao điểm của AN và BD.Chứng minh tam giác IAM vuông cân (Help me)
Cho tam giác ABC cân tại A , trên cạnh AB lấy điểm M, trên tia đối của tia CA lấy điểm N sao cho CN=BM.Vẽ ME vuông góc BC, NF vuông góc BC(E,F thuộc BE) .Gọi I là giao điểm của MN và BC
a)chứng minh IE=IF
b)trên cạnh AC lấy điểm D sao cho CD=CN.Chứng minh tứ giác BCDM là hình thanh cân.
Vẽ dùm hình luông nha ❤
Hình nè,nhìn rồi giải nha
CHO TAM GIÁC ABC CÂN TAIJA . TRÊN TIA ĐỐI CỦA BC LẤY M. TRÊN TIA ĐỐI CỦA CB LẤY N SAO CHO BM=CN. CHỨNG MINH
A, TAM GIÁC AMN CÂN
B,KẺ BH VUÔNG GÓC AM, CK VUÔNG GÓC AN. CHỨNG MINH BH=CK
C, GỌI O LÀ GIAO ĐIỂM CỦA BH VÀ CK . CHỨNG MINH OBC CÂN
D, GỌI D TRUNG ĐIỂM BC. CHỨNG MINH A,O,D THẲNG HÀNG
CHỈ CÂN LÀM CÂU D THÔI NHÉ! HELP ME
cho tam giác ABC có AB = AC , Gọi D là trung điểm của cạnh BC
a, chứng minh tam giác ABD = tam giác ACD và AD vuông tại BC
b, vẽ DM vuông góc cs AB tại M . Trên cạnh AC lấy điểm N sao cho AN = AN . gọi I là giao điểm của AD và MN chứng minh AD vuông góc MN tia I
C, gọi K là trung điểm của CN , Trên tia DK lấy điểm E sao cho K là trung điểm của DE . Chứng minh M,N,E thẳng hàng
Cho hình vuông ABCD. Dựng tam giác ABE vuông cân tại E ở phía ngoài hình vuông ABCD. Gọi N là trung điểm AD. M là giao điểm của CE và AB. P là giao điểm của CN và AB. F là giao điểm của PE và MN. Lấy Q trên đường thẳng FP sao cho CE phân giác \(\widehat{QCB}\). Chứng minh: \(MQ\perp CF\)
a) Xét ΔIMC vuông tại I và ΔINC vuông tại I có
CI chung
MI=NI(gt)
Do đó: ΔIMC=ΔINC(hai cạnh góc vuông)
b) Ta có: ΔIMC=ΔINC(cmt)
nên (hai góc tương ứng)
hay
Xét ΔBAC vuông tại A và ΔKAC vuông tại A có
AC chung
(cmt)
Do đó: ΔBAC=ΔKAC(cạnh góc vuông-góc nhọn kề)
⇒CB=CK(hai cạnh tương ứng)
Ta có: MI⊥AC(gt)
AB⊥AC(ΔABC vuông tại A)
Do đó: MI//AB(Định lí 1 từ vuông góc tới song song)
hay MN//KB
Xét ΔCKB có
M là trung điểm của CB(gt)
MN//KB(cmt)
Do đó: N là trung điểm của CK(Định lí 1 đường trung bình của tam giác)
c) Ta có: MA=ME(gt)
mà A,M,E thẳng hàng
nên M là trung điểm của AE
Xét tứ giác ABEC có
M là trung điểm của đường chéo BC(gt)
M là trung điểm của đường chéo AE(cmt)
Do đó: ABEC là hình bình hành(Dấu hiệu nhận biết hình bình hành)
hay AB//EC(Hai cạnh đối trong hình bình hành ABEC)
d) Ta có: ABEC là hình bình hành(cmt)
nên AB=EC(Hai cạnh đối trong hình bình hành ABEC)
mà AB=AK(ΔCBA=ΔCKA)
nên EC=AK
Ta có: AB//EC(Cmt)
nên CE//KA
Xét tứ giác AECK có
CE//AK(cmt)
CE=AK(cmt)
Do đó: AECK là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Xét ΔCAB có
M là trung điểm của BC(gt)
MI//AB(cmt)
Do đó: I là trung điểm của AC(Định lí 1 đường trung bình của tam giác)
Ta có: AECK là hình bình hành(cmt)
nên Hai đường chéo AC và EK cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)
mà I là trung điểm của AC(cmt)
nên I là trung điểm của EK
hay E,I,K thẳng hàng(đpcm)
chúc bạn học tốt nha cái này mình cũng không chắc là đúng đó bạn :)
a) Xét ΔIMC vuông tại I và ΔINC vuông tại I có
CI chung
MI=NI(gt)
Do đó: ΔIMC=ΔINC(hai cạnh góc vuông)
b) Ta có: ΔIMC=ΔINC(cmt)
nên \(\widehat{MCI}=\widehat{NCI}\)(hai góc tương ứng)
hay \(\widehat{BCA}=\widehat{KCA}\)
Xét ΔCAB vuông tại A và ΔCAK vuông tại A có
CA chung
\(\widehat{BCA}=\widehat{KCA}\)(cmt)
Do đó: ΔCAB=ΔCAK(Cạnh góc vuông-góc nhọn kề)
Suy ra: CA=CK(hai cạnh tương ứng)
Ta có: CN+NK=CK(N nằm giữa C và K)
CM+MB=CB(M nằm giữa C và B)
mà CK=CB(cmt)
và CN=CM(ΔCNI=ΔCMI)
nên NK=MB
mà \(MB=\dfrac{BC}{2}\)(M là trung điểm của BC)
nên \(NK=\dfrac{BC}{2}\)
mà BC=KC(cmt)
nên \(NK=\dfrac{CK}{2}\)
mà điểm N nằm giữa hai điểm C và K
nên N là trung điểm của CK(đpcm)
c) Xét ΔAMB và ΔEMC có
MA=ME(gt)
\(\widehat{AMB}=\widehat{EMC}\)(hai góc đối đỉnh)
MB=MC(M là trung điểm của BC)
Do đó: ΔAMB=ΔEMC(c-g-c)
Suy ra: \(\widehat{MAB}=\widehat{MEC}\)(hai góc tương ứng)
mà \(\widehat{MAB}\) và \(\widehat{MEC}\) là hai góc ở vị trí so le trong
nên AB//EC(Dấu hiệu nhận biết hai đường thẳng song song)
Tam giác ABC cân tại A, M nằm giữa A và B. Trên tia CA lấy N sao cho CN=BM. Vẽ ME, NF, lần lượt vuông góc với BC. Gọi I là giao điểm của MN và BC.
a) Chứng minh IE=IF
b) Trên tia AC lấy điểm D sao cho CD=CN. Chứng minh BMDC là hình thang cân.
đề bài sai rồi bn ơi
Cho tam giác ABC vuông tại A(AB<AC) , M là trung điểm của BC . MD vuông góc với AB ; ME vuông góc với AC . Trên tia đối DM lấy điểm N sao cho DN=DM
a) chứng minh AMBN là hình thoi
b) CK vuông góc với BN ; I là giao điểm của AM và DE . Chứng minh tam giác IKN cân
c) Gọi F là giao điểm của AM và CD . Chứng minh AN=3MF
bài 1: cho tam giác ABC vuông cân tại A.M di chuyển trên đường cao AH qua E kẻ đường thẳng vuoonh góc với BM cắt BC tại E.hỏi khi M di chuyển trên AH thì trung điểm I của ME chỵ trên đường nào
bài 2:cho tam giác abc cạnh BC =a, các trung tuyến BD, CE. lấy M,N trên BC sao cho BM=MN=NC. gọi I là giao điểm của AM và BD.J là giao điểm của AN và EC.tính IJ theo a
bài 3: tam giác ABC. O là điểm cách dều 3 cạnh.trên tia BC lấy M sao cho BM=BA. trên tia CB lấy N sao cho CN =CA. gọi D,E,F là hình chiếu của O trên BC,CA,AB.chứng minh NE=NF
Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thang
Bài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:
a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông
Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của AC và BD. C/minh EA = EB
Bài 4: Cho ABCD là hình thang ( AB // CD, AB < CD ). Kẻ các đường cao AE,BF của hình thang. C/minh rằng DE = CF
Bài 5: Cho ABCD là hình thang ( AB // CD ) có DB là đường phân giác góc D và AE là đường phân giác góc A ( E thuộc DC ). Biết AE // BC và O là giao điểm của AE với DB. CMR:
a) AE vuông góc với DB
b) AD // BE và AD = BE
c) E là trung điểm của DC
d) Xác định dạng của tứ giác BCEO
e) Biết góc BEC = 80 độ. Hãy tính các góc của hình thang ABCD
Bài 4:
Xét ΔAED vuông tại E và ΔBFC vuông tại F có
AD=BC
góc D=góc C
Do đó: ΔAED=ΔBFC
=>DE=CF
Bài 3:
a: Xét ΔADC và ΔBCD có
AD=BC
AC=BD
DC chung
Do đó: ΔADC=ΔBCD
=>góc ACD=góc BDC
b: Ta co: góc ACD=góc BDC
=>góc EAB=góc EBA
=>ΔEAB cân tại E