Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bùi anh tuấn
Xem chi tiết
My Love bost toán
22 tháng 11 2018 lúc 19:09

Câu 1 

Ta có : \(\frac{a}{b}=\frac{c}{d}=>\left(\frac{a}{b}+1\right)=\left(\frac{c}{d}+1\right)\left(=\right)\frac{a+b}{b}=\frac{c+d}{d}\)

=> ĐPCM

Câu 2

Ta có \(\frac{a}{b}=\frac{c}{d}=>\frac{b}{a}=\frac{d}{c}=>\left(\frac{b}{a}+1\right)=\left(\frac{d}{c}+1\right)\left(=\right)\frac{b+a}{a}=\frac{d+c}{c}=>\frac{a}{b+a}=\frac{c}{d+c}\)

=> ĐPCM

Câu 3

My Love bost toán
22 tháng 11 2018 lúc 19:20

Câu 3

Ta có \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(=) (a+b).(c-d)=(a-b).(c+d)(=)ac-ad+bc-bd=ac+ad-bc-bd(=)-ad+bc=ad-bc(=) bc+bc=ad+ad(=)2bc=2ad(=)bc=ad=> \(\frac{a}{b}=\frac{c}{d}\)

=> ĐPCM

Câu 4 

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(=>\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

Ta có \(\frac{ac}{bd}=\frac{bk.dk}{bd}=k^2\left(1\right)\)

Lại có \(\frac{a^2+c^2}{b^2+d^2}=\frac{b^2k^2+c^2k^2}{b^2+d^2}=\frac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(2\right)\)

Từ (1) và (2) => ĐPCM

Jctdhsdtf
23 tháng 11 2018 lúc 20:05

Mày là thằng anh tuấn lớp 7c trường THCS yên lập đúng ko 

Thanh Vân Vũ
Xem chi tiết
HD Film
17 tháng 8 2020 lúc 13:41

\(\frac{1}{a}+\frac{1}{a-b}=\frac{1}{b-c}-\frac{1}{c}\Leftrightarrow\frac{1}{a-b}+\frac{1}{c}=\frac{1}{b-c}-\frac{1}{a}\)

\(\Leftrightarrow\frac{c+a-b}{\left(a-b\right)c}=\frac{a-b+c}{\left(b-c\right)a}\)(1)

Do \(\frac{a}{c}=\frac{a-b}{b-c}\Leftrightarrow a\left(b-c\right)=\left(a-b\right)c\)nên (1) đúng, đẳng thức được CM

Khách vãng lai đã xóa
Nguyen Đình Hải
Xem chi tiết
Cửu vĩ linh hồ Kurama
5 tháng 10 2016 lúc 20:36

Kb với mình nha!!!!Mong bạn kb với mình!!!!

Mình chỉ muốn có nhiều bạn thôi!!!

Minh Bui Tuan Minh
5 tháng 10 2016 lúc 23:35

1 - a/b = 1 - c/d

=> a-b/b = c-d/d

=>a/a-b = c/c-d

Chuc bn hoc tot nha !

Phùng Thị Hồng Vân
Xem chi tiết
Trần Bảo Thùy Dương
Xem chi tiết
Lizy
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 1 lúc 11:20

Ta có:

\(\left(\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)\left(\dfrac{c}{a-b}+\dfrac{a}{b-c}+\dfrac{b}{c-a}\right)\)

\(=\dfrac{c}{a-b}\left(\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)+\dfrac{a}{b-c}\left(\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)+\dfrac{b}{c-a}\left(\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)\)

Xét:

\(\dfrac{c}{a-b}\left(\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)\)

\(=1+\dfrac{c}{a-b}\left[\dfrac{b\left(b-c\right)+a\left(c-a\right)}{ab}\right]=1+\dfrac{c}{a-b}\left(\dfrac{b^2-bc+ac-a^2}{ab}\right)\)

\(=1+\dfrac{c}{a-b}\left[\dfrac{\left(b-a\right)\left(b+a\right)-c\left(b-a\right)}{ab}\right]=1+\dfrac{c}{a-b}.\dfrac{\left(b-a\right)\left(a+b-c\right)}{ab}\)

\(=1-\dfrac{c\left(a+b-c\right)}{ab}=1-\dfrac{c.\left(-2c\right)}{ab}=1+\dfrac{2c^2}{ab}\) (do \(a+b+c=0\Rightarrow a+b=-c\))

Tương tự:

\(\dfrac{a}{b-c}\left(\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)=1+\dfrac{2a^2}{bc}\)

\(\dfrac{b}{c-a}\left(\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)=1+\dfrac{2b^2}{ca}\)

\(\Rightarrow P=3+2\left(\dfrac{a^2}{bc}+\dfrac{b^2}{ca}+\dfrac{c^2}{ab}\right)=3+\dfrac{2\left(a^3+b^3+c^3\right)}{abc}\)

Mặt khác ta có đằng thức quen thuộc:

Khi \(a+b+c=0\) thì \(a^3+b^3+c^3=3abc\)

\(\Rightarrow P=3+\dfrac{2.3abc}{abc}=9\)

Con Gái Họ Trần
Xem chi tiết
thanh tam tran
29 tháng 8 2016 lúc 20:09

bacd=dacb vay ...

Sống cho đời lạc quan
10 tháng 12 2016 lúc 20:18

tự làm đi cái này không khó 

Nguyễn Thị Lệ
Xem chi tiết
Thảo Vũ
Xem chi tiết