tìm các số nguyên tố sao cho số hữu tỷ 7/n-3 là số nguyên
Tìm tất cả các số nguyên tố \(p\)sao cho \(\sqrt{1+p+p^2+p^3+p^4}\)là số hữu tỷ
Ta có : \(\left[p\left(2p+1\right)\right]^2< 4\left(p^4+p^3+p^2+p+1\right)< \left[p\left(2p+1\right)+2\right]^2\)
Suy ra \(4\left(p^4+p^3+p^2+p+1\right)=\left[p\left(2p+1\right)+1\right]^2\) (số kẹp giữa)
Vậy \(\sqrt{p^4+p^3+p^2+p+1}=\frac{p\left(2p+1\right)+1}{2}\) là một số hữu tỉ.
tìm các số nguyên tố n sao cho (2ⁿ+7×n) cũng là số nguyên tố
Bài 1: tìm số tự nhiên n sao cho n-1; n+1;n+5;n+7;n+11;n+13 đồng thời là số nguyên tố
Bài 2: tìm cấc số nguyên tố p sao cho p^3+p^2+11p+2 là số nguyên tố
Tìm tất cả các số nguyên dương x,y,z thỏa mãn \(\frac{x+y\sqrt{2017}}{y+z\sqrt{2017}}\) là số hữu tỷ và (y_2)(4xz+6y-3) là số nguyên tố
1. Tìm các số nguyên tố sao cho các số sau đây cũng là số nguyên tố:
a. p+2 và p+10
b. p+10 và p+20
c. p+2 , p+6 , p+8 , p+12 , p+14
2. Tổng của 3 số nguyên tố là 1012, tìm số nhỏ nhất trong ba số nguyên tố đó.
3. Tổng sau là số nguyên tố hay hợp số? Vì sao?
2 * 3 * 5 * 7 * 11 + 13 * 17 * 19 * 21
4. Tìm số tự nhiên n sao cho n+8 chia hết cho n+1
5. Tìm số nguyên tố a để 4*a+11 là số nguyên tố <30
6.Tìm các số tự nhiên x,y sao cho:
(2x+1) .(y-3)
Ccá bạn làm cả bài giải giúp mình nha, mình phải có trước tôi thứ hai, thông cảm, bài nhiều là do thầy mình, mình hứa sẽ bám đúng, thề danh dự
1.
a) p = 1
b) p = 1
c) p = 1
3.
là hợp số . Vì 2*3*5*7*11+13*17*19*21 = 90489
đăng từng bài 1 thôi nhiều quá ngất xỉu luôn.
thì có ai kêu là tra loi gium dau
Tìm số nguyên dương n sao cho 5n - 7; 3n - 4; 7n + 3; 6n + 1; 9n + 5 là các số nguyên tố
cho p là số nguyên tố lớn hơn 3. chứng minh p2 -1 chia hết cho 24
tìm số tự nhiên n sao cho n+1, n+77, n+99 đều là các số nguyên tố
cho a+b=c+d=e+f với a,b,c,d,e,f là các số nguyên tố phân biệt, nhỏ hơn 20. Tìm a+b
tìm số nguyên tố p sao cho p+2, p+94 là các số nguyên tố
Bài 1:Tìm số nguyên tố p, sao cho p+2 và p+4 cũng là các số nguyên tố.
Bài 2. Cho p và 2p + 1 là các số nguyên tố ( p > 3). Hỏi 4p + 1 là số nguyên tố hay hợp số?
Bài 3:
a) Tìm số nguyên tố p,sao cho p + 4 và p + 8 cũng là các số nguyên tố.
b) Tìm số nguyên tố p, sao cho p + 6, p + 8, p + 12, p + 14 cũng là các số nguyên tố.
Bài 4: Tìm số tự nhiên nhỏ nhất có 12 ước số.
Bài 5: Chứng minh rằng với mọi số tự nhiên n, các số sau là hai số nguyên tố cùng nhau: a) 7n + 10 và 5n + 7 ; b) 2n + 3 và 4n + 8
c) 4n + 3 và 2n + 3 ; d) 7n + 13 và 2n + 4 ; e) 9n + 24 và 3n + 4 ; g) 18n + 3 và 21n + 7
Bài 1:
Nếu p = 2 thì p + 2 = 2 + 2 = 4 không là số nguyên tố
2 + 4 = 6 không là số nguyên tố
Vậy p = 2 không thỏa mãn
Nếu p = 3 thì p + 2 = 3 + 2 = 5 là số nguyên tố
3 + 4 = 7 là số nguyên tố
Vậy p = 3 thỏa mãn
Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2
Khi p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3 = 3(k + 1) không là số nguyên tố
Vậy p = 3k + 1 không thỏa mãn
Khi p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố
Vậy p = 3k + 2 không thỏa mãn
Vậy p = 3 thỏa mãn duy nhất.
Bài 2:
Khi ta xét 3 số tự nhiên liên tiếp 4p; 4p + 1; 4p + 2 thì chắc chắn sẽ có một số chia hết cho 3
p là số nguyên tố; p > 3 nên p không chia hết cho 3 => 4p không chia hết cho 3
Ta thấy 2p + 1 là số nguyên tố; p > 3 => 2p + 1 > 3 nên 2p + 1 không chia hết cho 3 => 2(2p + 1) không chia hết cho 3 -> 4p + 2 không chia hết cho 3
Vì thế 4p + 1 phải chia hết cho 3
Mà p > 3 nên 4p + 1 > 3
=> 4p + 1 không là số nguyên tố. 4p + 1 là hợp số.
Bài 3:
a) Nếu p = 2 thì p + 4 = 2 + 4 = 6 không là số nguyên tố
p + 8 = 2 + 8 = 10 không là số nguyên tố
Vậy p = 2 không thỏa mãn
Nếu p = 3 thì p + 4 = 3 + 4 = 7 là số nguyên tố
p + 8 = 3 + 8 = 11 là số nguyên tố
Vậy p = 3 thỏa mãn
Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2
Nếu p = 3k + 1 thì p + 8 = 3k + 1 + 8 = 3k + 9 = 3(k + 3) không là số nguyên tố
p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố
Vậy p > 3 không thỏa mãn
Vậy p = 3 thỏa mãn duy nhất
tìm các số nguyên tố n sao cho:
a) N; n+3;n+5 đều là các số nguyên tố
b) n+2 và n+4 đều là số nguyên tố