giải bất phương trình x2 + 3x +1 < 0
Giải bất phương trình:
x 2 + 1 - x + 1 x 2 + 3 x - 6 ≤ 0
A.
B.
C.
D.
Chọn C
ĐKXĐ:
Bảng xét dấu
Dựa vào bảng xét dấu và đối chiếu điều kiện, ta có tập nghiệm của bất phương trình đã cho là
Giải các bất phương trình sau: ( x 2 / 3 ) + 3 x + 6 < 0 .
( x 2 / 3 ) + 3 x + 6 < 0 ⇔ x 2 + 9 x + 18 < 0 ⇔ -6 < x < -3
Giải các bất phương trình sau: x 2 + 1 x 2 + 3 x - 10 < 0
Giải các bất phương trình sau:
a) 3 x + 15 < 0 ; b) − 3 x − 4 > 2 ;
c) x 2 − 11 5 ≤ − 1 5 ; d) 1 − 4 x 12 < 5 − 3 x 9
Giải bất phương trình g ' ( x ) ≤ 0 với g ( x ) = x 2 + 3 x − 9 x − 2
A. S = (1; 3)
B. S = 1 ; 3 / 2
C. S = − ∞ ; 1 ∪ ( 3 ; + ∞ )
D. S = − ∞ ; 1
Ta có
g ' ( x ) = ( 2 x + 3 ) . ( x − 2 ) − 1. ( x 2 + 3 x − 9 ) ( x − 2 ) 2 = x 2 − 4 x + 3 ( x − 2 ) 2
Mà g ' ( x ) ≤ 0
⇔ x 2 − 4 x + 3 ≤ 0 x − 2 ≠ 0 ⇔ 1 ≤ x ≤ 3 x ≠ 2 ⇔ x ∈ 1 ; 3 \ 2
Vậy tập nghiệm bất phương trình là: S=[1 ; 3]\{2}
Chọn đáp án B
Giải bất phương trình: x 2 - 3 x + 1 x 2 - 1 < 1
Điều kiện xác định x ≠ ±1.
Đặt . Ta có bảng xét dấu:
Dựa vào bảng xét dấu ta thấy
Vậy bất phương trình có tập nghiệm là
giải bất phương trình sau f(x)=(3x-4)(2x-3)/(x2-5x+6)(5-x)>0
\(f\left(x\right)=\dfrac{\left(3x-4\right)\left(2x-3\right)}{\left(x^2-5x+6\right)\left(5-x\right)}>0\)
\(\Leftrightarrow\dfrac{\left(3x-4\right)\left(2x-3\right)}{\left(x-2\right)\left(x-3\right)\left(5-x\right)}>0\)
Bảng xét dấu:
Từ bảng xét dấu ta thấy nghiệm của BPT là: \(\left[{}\begin{matrix}x< 5\\\dfrac{3}{2}< x< 2\\3< x< 5\end{matrix}\right.\)
Giải bất phương trình log 1 2 ( x 2 - 3 x + 2 ) ≥ - 1
A.
B.
C.
D.
|2x-3| ≤ -x2+3x-1 giải bất phương trình
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-3\ge0\\2x-3\le-x^2+3x-1\end{matrix}\right.\\\left\{{}\begin{matrix}2x-3< 0\\3-2x\le-x^2+3x-1\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\x^2-x-2\le0\end{matrix}\right.\\\left\{{}\begin{matrix}x< \dfrac{3}{2}\\x^2-5x+4\le0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\-1\le x\le2\end{matrix}\right.\\\left\{{}\begin{matrix}x< \dfrac{3}{2}\\1\le x\le4\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{3}{2}\le x\le2\\1\le x< \dfrac{3}{2}\end{matrix}\right.\) \(\Rightarrow1\le x\le2\)
Tập nghiệm của bất phương trình (4 - 3x)(-2 x 2 + 3x - 1) ≤ 0 là:
A. T = (- ∞ ; 1 2 ]
B. T = [1; 4 3 ]
C. T = (- ∞ ; 1 2 ] ∪ [1; 4 3 ]
D. T = ( 1 2 ;1)
Chọn C.
Ta có :
+) 4 - 3x = 0 ⇔ x = 4/3
+) -2 x 2 + 3x - 1 = 0
Lập bảng xét dấu :
Vậy tập nghiệm của bất phương trình (4 - 3x)(-2 x 2 + 3x - 1) ≤ 0 là