Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Mai
Xem chi tiết
cao mạnh lợi
Xem chi tiết
Phạm Tuấn Đạt
1 tháng 11 2018 lúc 15:43

\(x^2+3y^2+2z^2-2x+12y+4z+15=0\)

\(x^2-2x+1+\left(\sqrt{3}y\right)^2+2.6.y+\left(2\sqrt{3}\right)^2+\left(\sqrt{2}z\right)^2+2.2.z+\left(\sqrt{2}\right)^2=0\)

\(\left(x-1\right)^2+\left(\sqrt{3}y+2\sqrt{3}\right)^2+\left(\sqrt{2}z+\sqrt{2}\right)^2=0\)

\(\Rightarrow x=1;y=-2;z=-1\)

ST
1 tháng 11 2018 lúc 15:44

<=>(x2-2x+1)+(3y2+12y+12)+(2z2+4z+2)=0

<=>(x-1)2+3(y+2)2+2(z+1)2=0

Vì \(\hept{\begin{cases}\left(x-1\right)^2\ge0\\3\left(y+2\right)^2\ge0\\2\left(z+1\right)^2\ge0\end{cases}\Rightarrow\left(x-1\right)^2+3\left(y+2\right)^2+2\left(z+1\right)^2\ge0}\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-1=0\\y+2=0\\z+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\\z=-1\end{cases}}}\)

Miki Thảo
Xem chi tiết
Miki Thảo
Xem chi tiết
Đinh Tuấn Việt
24 tháng 9 2015 lúc 20:48

Bài 3 :

\(x=3y=2z\)

\(\Rightarrow x=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{2}}\)

\(\Rightarrow\frac{2x}{2}=\frac{3y}{1}=\frac{4z}{2}=\frac{2x-3y+4z}{2-1+2}=\frac{k}{3}\)

\(\Rightarrow x=\frac{k}{3}\)

     \(y=\frac{k}{3}.\frac{1}{3}=\frac{k}{9}\)

     \(z=\frac{k}{3}.\frac{1}{2}=\frac{k}{6}\)

Nguyễn Ngọc Hà Linh
Xem chi tiết
Võ Đông Anh Tuấn
6 tháng 6 2016 lúc 10:32

\(x^2+4y^2+z^2=2x+12y-4z-14\)

\(\Rightarrow x^2+4y^2+z^2-2x-12y+4z+14=0\)

\(\Rightarrow\left(x^2-2x+1\right)+\left(4y^2-12y+9\right)+\left(z^2+4z+4\right)=0\)

\(\Rightarrow\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2=0\)

Ta có : \(\left(x-1\right)^2\ge0\Rightarrow x-1=0\Rightarrow x=1\)

             \(\left(2y-3\right)^2\ge0\Rightarrow2y-3=0\Rightarrow2y=3\Rightarrow y=\frac{3}{2}\)

              \(\left(z+2\right)^2\ge0\Rightarrow z+2=0\Rightarrow z=-2\)

Nguyễn Thị Phương Thảo
Xem chi tiết
Đỗ Phương Thảo
Xem chi tiết
Agatsuma Zenitsu
20 tháng 1 2020 lúc 16:44

Chia nhỏ ra bạn ơi!

\(a) x² +3y²+2z²-2x+12y+4z+15=0 \)

\(⇔x²-2x+1+3y²+12y+12+2z²+4z+2=0 \)

\(⇔(x²-2x+1) + 3(y²+4y+4) +2(z²+2z+1)=0 \)

\(⇔(x-1)² +3(y+2)²+2(z+1)²=0 \)

\(⇔ x-1=0 \) và \(y+2=0\) và \(z+1=0\)

Vậy: \(x=1;y=-2;z=-1\)

Khách vãng lai đã xóa
Hoàng Văn Anh
Xem chi tiết
Trần Quang Đài
Xem chi tiết
Trần Quang Đài
7 tháng 5 2016 lúc 12:22

\(=\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2=0\)

\(\Rightarrow x=1;y=\frac{3}{2};z=-2\)

Nguyễn Hoàng Tiến
7 tháng 5 2016 lúc 12:23

Ta có:

x2+4y2+z2-2x-12y-4z-14=0

x2-2x+1+z2-4z+4+4y2-12y+9=0

(x-1)2+(z-2)2+(2y-3)2=0

Tổng 3 số không âm bằng 0

<=> x-1=0 và z-2=0 và 2y-3=0

<=> x=1 và z=2 và y=3/2

Not Like
7 tháng 5 2016 lúc 12:23

X^2 -2x +1 + (2y)^2 + 12y + 9 +z^2 +4z +4=0

<=> (x - 1)^2 + (2x + 3)^2 + (z+2)^2= 0

<=> x=1, y= -3/2 z=-2