tìm số nguyên (x,y) thỏa mãn / x-7 / + / (-15)-y / = 0
a, tìm các số nguyên x thỏa mãn: (x2-7) . (x2-49) <0
b, tìm các số nguyên x,y thỏa mãn: x.y+x+y=4
Tìm các số nguyên x,y thỏa mãn:6xy+4x-9y-7=0
Tìm giá trị nhỏ nhất của A=x^3+y^3+xy với x,y dương thỏa mãn x+y=1
Tìm các số nguyên x,y thỏa mãn 2x^2+1/x^2+y^2/4=4 sao cho xy đạt giá trị lớn nhất
HELP !
a) \(6xy+4x-9y-7=0\)
\(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)
\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)
\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)
Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)
Tự làm típ
\(A=x^3+y^3+xy\)
\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))
\(A=x^2+y^2\)
Áp dụng bất đẳng thức Bunhiakovxky ta có :
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
Hay \(x^3+y^3+xy\ge\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
1/ tìm x,y nguyên dương thỏa mãn: \(x^2-y^2+2x-4y-10=0\)0
2/giải pt nghiệm nguyên :\(x^2+2y^2+3xy+3x+5y=15\)
3/tìm các số nguyên x;y thỏa mãn:\(x^3+3x=x^2y+2y+5\)
4/tìm tất cả các nghiệm nguyên dương x,y thỏa mãn pt:\(5x+7y=112\)
Cặp số nguyên thỏa mãn | x - 7| + | -15 - y| = 0 là (...:...)
Ta có: |x-7|>=0(với mọi x)
|-15-y|>=0(với mọi y)
nên |x-7|+|-15-y|>=0(với mọi x,y)
mà |x-7|+|-15-y|=0(theo đề)
nên dấu = chỉ xảy ra khi:
x-7=0 và -15-y=0
x=0+7 -y=0+15=15
x=7 y=-15
Cặp số nguyên thỏa mãn đề là: {7;-15}
tìm các số nguyên dương x,y thỏa mãn \(\left(x+y\right)^2\)- 4x-5y-7=0
Tìm các số nguyên \(x,y\) thỏa mãn: \(x^2+2xy+7\left(x+y\right)+2y^2+10=0\)
\(x^2+2xy+7.\left(x+y\right)+2y^2+10=0\)
\(\Leftrightarrow\left(x+y^2\right)+7.\left(x+y\right)+\dfrac{49}{4}+y^2-\dfrac{9}{4}=0\)
\(\Leftrightarrow\left(x+y+\dfrac{7}{2}^2\right)=\dfrac{9}{4}-y^2\)
\(Do\left(x+y+\dfrac{7}{2}^2\right)\ge0\Rightarrow\dfrac{9}{4}-y^2\ge0\Rightarrow y^2\le\dfrac{9}{4}\)
Mà y nguyên \(\Rightarrow\left\{{}\begin{matrix}y^2\\\\y^2=1\end{matrix}\right.=0\)
Thay vào phương trình đầu:
Với \(y=0\Rightarrow x^2+7x+10=0\Rightarrow\left\{{}\begin{matrix}x=-2\\\\\\x=-5\end{matrix}\right.\)
Với \(y=1\Rightarrow x^2+9x+19=0\Rightarrow\) không có x nguyên
Với \(y=-1\Rightarrow x^2+5x+5=0\Rightarrow\) không có x nguyên
b) x+3/y+ 5 = x + 5 / y+ 7 . Tìm x - y
c ) tìm số nguyên x thỏa mãn : ( x + 2 ) x < 0
Ta co: (x+3)/(x+5) = (x+5)/(y+7)
=> (x+3).(y+7) = (x+5).(y+5)
=> xy+7x+3y+21 = xy+5x+5y+35
=> 7x-5x+21 = 5y-3y+35
=> 2x = 2y +35-21 = 2y+14
=> x = y+7
=> x-y = 7
c) tu lam nka ban!!!!
1/tìm các cặp số nguyên (x;y) thỏa mãn:\(5x^2+2xy+y^2-4x-40=0\)0
2/tìm các số nguyên x;y thỏa mãn:\(3xy+x+15y-44=0\)
3/gtp nghiệm nguyên :\(2x^2+3xy-2y^2=7\)
\(3xy+x+15y-44=0\)
\(3y\left(x+5\right)+\left(x+5\right)-49=0\)
\(\left(x+5\right)\left(3y+1\right)=49\)
Vì x;y là số nguyên \(\Rightarrow\hept{\begin{cases}x+5\in Z\\3y+1\in Z\end{cases}}\)
Có \(\left(x+5\right)\left(3y+1\right)=49\)
\(\Rightarrow\left(x+5\right)\left(3y+1\right)\in\text{Ư}\left(49\right)=\left\{\pm1;\pm7;\pm49\right\}\)
b tự lập bảng nhé~
TÌM X. Y NGUYÊN > 0 THỎA MÃN 3x +7 = y( x-3y)
3x+7=y(x-3y)
=>3x-xy+3y^2=7
=>x(3-y)+3y^2-27=-20
=>x(3-y)+3(y-3)(y+3)=-20
=>x(3-y)-3(3-y)(y+3)=-20
=>(3-y)(x-3y-9)=-20
=>(y-3)(x-3y-9)=-20
mà x,y là số nguyên dương
nên (x-3y-9;y-3) thuộc {(-5;4); (-4;5); (-2;10); (-1;20)}
=>(x-3y-9;y) thuộc {(-5;7); (-4;8); (-2;13); (-1;23)}
=>(x,y) thuộc {(29;8); (46;13); (77;23)}
Cặp số nguyên (x;y) thỏa mãn | x - 7| + | -15 - y| = 0 là.......................................
(Nhập kết quả theo thứ tự x trước, y sau cách nhau bởi dấu ";" )
x=7; y=-15
Tick giùm mink cái!!!!!!!!!!!!!!!!!!!!!!!!!!