Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nữ hoàng sến súa là ta
Xem chi tiết
tíntiếnngân
6 tháng 6 2019 lúc 19:19

b) có

\(17< 10,25\Rightarrow\sqrt{17}< 4,5\)

\(29< 20,15\Rightarrow\sqrt{19}< 4,5\)

\(\Rightarrow\sqrt{17}+\sqrt{19}< 4,5+4,5=9\)

tíntiếnngân
8 tháng 6 2019 lúc 10:41

a) có \(27< 36\)nên \(\sqrt{27}< 6\)

\(\Rightarrow3\sqrt{27}< 18\)(1)

có \(19< 25\Rightarrow\sqrt{19}< 5\Rightarrow23-\sqrt{19}>18\)(2)

từ (1) và (2) suy ra 

\(23-\sqrt{19}>3\sqrt{27}\Rightarrow\frac{23-\sqrt{19}}{3}>\sqrt{27}\)

xin lỗi giờ mình mới nghĩ ra câu a

Trần Vũ Khánh Phương
Xem chi tiết
Đạt TL
30 tháng 9 2019 lúc 21:05

\(\sqrt{19}+\sqrt{21}=\sqrt{\left(\sqrt{19}+\sqrt{21}\right)^2}=\sqrt{40+2\sqrt{19\cdot21}}=\sqrt{40+2\sqrt{\left(20-1\right)\left(20+1\right)}}=\sqrt{40+2\sqrt{20^2-1}}< \sqrt{40+2\sqrt{20^2}}=\sqrt{80}=2\sqrt{20}\)

Hương Giang Lê
Xem chi tiết
Đinh quang hiệp
16 tháng 6 2018 lúc 11:50

a    \(\left(\sqrt{5\sqrt{7}}\right)^4=\left(\left(\sqrt{5\sqrt{7}}\right)^2\right)^2=\left(5\sqrt{7}\right)^2=25\cdot7=175\)

\(=\left(\sqrt{7\sqrt{5}}\right)^4=\left(\left(\sqrt{7\sqrt{5}}\right)^2\right)^2=\left(7\sqrt{5}\right)^2=49\cdot5=240\)

vì 175<240\(\Rightarrow\left(\sqrt{5\sqrt{7}}\right)^4< \left(\sqrt{7\sqrt{5}}\right)^4\Rightarrow\sqrt{5\sqrt{7}}< \sqrt{7\sqrt{5}}\)

b     \(6=\sqrt{36}\)

\(\sqrt{31}< \sqrt{36};\sqrt{19}>\sqrt{17}\Rightarrow\sqrt{31}-\sqrt{19}< \sqrt{36}-\sqrt{17}=6-\sqrt{17}\)

c      \(\left(\sqrt{10}+\sqrt{17}\right)^2=10+2\sqrt{10\cdot17}+17=27+2\sqrt{170}\)

\(\left(\sqrt{61}\right)^2=61=27+34=27+2\cdot17=27+2\sqrt{289}\)

vì \(2\sqrt{170}< 2\sqrt{289}\Rightarrow27+2\sqrt{170}< 27+2\sqrt{289}\Rightarrow\left(\sqrt{10}+\sqrt{17}\right)^2< \left(\sqrt{61}\right)^2\)

\(\Rightarrow\sqrt{10}+\sqrt{17}< \sqrt{61}\)

Trần Hoa Tham
Xem chi tiết
ngonhuminh
27 tháng 11 2016 lúc 13:17

\(A=\sqrt{6}+\sqrt{12}+\sqrt{30}+\sqrt{56}\)

\(B^2=\left(\sqrt{6}+\sqrt{30}\right)^2=36+2\sqrt{180}>36+26=62\)

B>7;\(\sqrt{30}>5;\sqrt{56}>7\)

A>7+5+7=19

A>19

Nguyễn Minh Hoàng
Xem chi tiết
Nguyễn Trần Duy Thiệu
Xem chi tiết
Trần Minh Hoàng
5 tháng 6 2018 lúc 10:15

\(\frac{23-2\sqrt{9}}{3}=\frac{23\sqrt{29.4}}{3}=\frac{23\sqrt{116}}{3}< \frac{23\sqrt{144}}{3}=\frac{23.12}{3}=92< 100=\sqrt{10}\)

Mà \(\sqrt{10}< \sqrt{27}\)nên \(\frac{23-2\sqrt{9}}{3}< \sqrt{27}\)

Vậy,...

Nguyễn Trọng Hoàng Nghĩa
Xem chi tiết
Dương No Pro
30 tháng 8 2020 lúc 11:15

\(a\)

\(\sqrt{7}+\sqrt{15}\) 

\(=\sqrt{7+15}\)

\(=4,69\)

\(4,69< 7\)

\(\Rightarrow\sqrt{7}+\sqrt{15}< 7\)

\(b\)

\(\sqrt{7}+\sqrt{15}+1\)

\(=\sqrt{7+15}+1\)

\(=4,69+1\)

\(=5,69\)

\(\sqrt{45}\)

\(=6,7\)

\(5,69< 6,7\)

\(\Rightarrow\)\(\sqrt{7}+\sqrt{15}+1\)\(< \)\(\sqrt{45}\)

\(c\)

\(\frac{23-2\sqrt{19}}{3}\)

\(=\frac{22.4,53}{3}\)

\(=\frac{95,7}{3}\)

\(=31,9\)

\(\sqrt{27}\)

\(=5,19\)

\(31,9>5,19\)

\(\text{​​}\Rightarrow\text{​​}\text{​​}\)\(\frac{23-2\sqrt{19}}{3}\)\(>\sqrt{27}\)

\(d\)

\(\sqrt{3\sqrt{2}}\)

\(=\sqrt{3.1,41}\)

\(=\sqrt{4,23}\)

\(=2,05\)

\(\sqrt{2\sqrt{3}}\)

\(=\sqrt{2.1,73}\)

\(=\sqrt{3,46}\)

\(=1,86\)

\(2,05>1,86\)

\(\Rightarrow\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)

\(Học \) \(Tốt !!!\)

Khách vãng lai đã xóa
Trí Tiên亗
30 tháng 8 2020 lúc 11:36

a) Ta có : \(\sqrt{7}< \sqrt{9}=3;\sqrt{15}< \sqrt{16}=4\)

Do đó : \(\sqrt{7}+\sqrt{15}< 3+4=7\)

b) Ta có : \(\sqrt{17}>\sqrt{16}=4;\sqrt{5}>\sqrt{4}=2\)

\(\Rightarrow\sqrt{17}+\sqrt{5}+1>4+2+1=7\)

Lại có : \(\sqrt{45}< \sqrt{49}< 7\)

Do đó : \(\sqrt{17}+\sqrt{5}+1>\sqrt{45}\)

c) Ta thấy : \(\sqrt{19}>\sqrt{16}=4\)

\(\Rightarrow2\sqrt{19}>2.4=8\)

\(\Rightarrow-2\sqrt{19}< -8\)

\(\Rightarrow23-2\sqrt{19}< 23-8=15\)

\(\Rightarrow\frac{23-2\sqrt{19}}{3}< 5\). Mặt khác : \(\sqrt{27}>\sqrt{25}=5\)

Nên : \(\frac{23-2\sqrt{19}}{3}< \sqrt{27}\)

d) Vì : \(18>12>0\Rightarrow\sqrt{18}>\sqrt{12}>0\)

\(\Leftrightarrow3\sqrt{2}>2\sqrt{3}>0\)

\(\Rightarrow\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)

Khách vãng lai đã xóa
Anh Hà
Xem chi tiết
Nguyễn Đức An
Xem chi tiết