cho 21 số mà tổng của 10 số bất kì đều lớn hơn tổng của 11 số còn lại .Cmr cả 21 số đều âm
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho 5 số nguyên dương sao cho tổng 3 số bất kì lớn hơn hai số còn lại. CMR: Tất cả các số đều \(\ge5\)
Cho tập hợp A gồm 21 phần tử là các số nguyên khác nhau thỏa mãn tổng của 11 phần tử bất kì lớn hơn tổng của 10 phần tử còn lại Biết các số 101,102 thuộc A. Tìm các phần tử của A.
Cho tập hợp A gồm 21 phần tử là các số nguyên khác nhau thỏa mãn tổng của 11 phần tử bất kỳ lớn hơn tổng 10 phần tử còn lại . biết các số 101 và 102 thuộc A , tìm tất cả các phần tử của A
Cho tập hợp A gồm 21 phần tử là các số nguyên khác nhau thỏa mãn tổng của 11 phần tử bất kỳ lớn hơn tổng 10 phần tử còn lại . biết các số 101 và 102 thuộc A , tìm tất cả các phần tử của A
Cho tập hợp A gồm 21 phần tử là các số nguyên khác nhau thỏa mãn tổng của 11 phần tử bất kỳ lớn hơn tổng 10 phần tử còn lại . biết các số 101 và 102 thuộc A , tìm tất cả các phần tử của A
cho 5 số tự nhiên phân biệt sao cho tổng 3 số bất kì trong chúng lớn hơn tổng 2 số còn lại . chứng minh tất cả 5 số đều không nhỏ hơn 5.
Cho 100 số nguyên .Biết rằng tổng của 11 số bất kì trong các số đó đều là số nguyên âm. CMR tổng của 100 số nguyên đó cx là một số nguyên âm
Mn giúp My nhé!!!
1,cho a,b là các số nguyên dương thoả mãn : a^2+b^2 chia hết cho a.b
tính giá trị của biểu thức A= (a^2+b^2)/2ab
2, cho tập hợp A gồm 21 phần tử là các số nguyên khác nhau thoả mãn tổng của 11 phần tử bất kì lớn hơn tổng của 10 phần tử còn lại. biết các số 101,102 thuộc A. tìm tất cả các phần tử của A
Bài 1:
a)Nếu a dương thì số liền sau cũng dương.
Ta có: Nếu a dương thì a>0 số liền sau a lớn hơn a nên cũng lớn hơn 0 nên là số dương
b)Nếu a âm thì số liền trước a cũng âm.
Ta có: Nếu a âm thì a<0 số liền trước a nhỏ hơn a nên cũng nhỏ hơn 0 nên là số âm.
Bài 2. Trong các số đã cho ít nhất có 1 số dương vì nếu trái lại tất cả đều là số âm thì tổng của 5 số
bất kỳ trong chúng sẽ là số âm trái với giả thiết.
Tách riêng số dương đó còn 30 số chi làm 6 nhóm. Theo đề bài tổng các số của mỗi nhóm đều là số dương nên
tổng của 6 nhóm đều là số dương và do đó tổng của 31 số đã cho đều là số dương.
Bài 3:
Vì có 11 tổng mà chỉ có thể có 10 chữ số tận cùng đều là các số từ 0 , 1 ,2, ...., 9 nên luôn tìm được hai tổng có
chữ số tận cùng giống nhau nên hiệu của chúng là một số nguyên có tận cùng là 0 và là số chia hết cho 10.