Chứng minh rằng x^2021 +x+1 chia hết cho x^2 +x+1
a)chứng minh rằng : với mọi số tự nhiên n : (x+1)^4n+2 +(x-1)^4n+2 chia hết cho x^2 +1
b) chứng minh rằng với mọi số tự nhiên n : ( x^n -1) ( x^n+1 -1) chia hết cho (x+1)(x-1)
1. Với x, y là những số nguyên. Chứng minh rằng (p+1)(q+1) chia hết cho 4.
2. Với x, y là những số nguyên. Chứng minh rằng (x^2+x)(x+2) - 15y chia hết cho 3.
2. \(\left(x^2+x\right)\left(x+2\right)-15y=x\left(x+1\right)\left(x+2\right)-15y\)
Vì \(x\), \(x+1\)và \(x+2\)là 3 số nguyên liên tiếp
\(\Rightarrow x\left(x+1\right)\left(x+2\right)⋮3\)
mà \(15y⋮3\)\(\Rightarrow x\left(x+1\right)\left(x+2\right)-15y⋮3\)
hay \(\left(x^2+x\right)\left(x+2\right)-15y⋮3\)( đpcm )
Mình cảm ơn ạ !!!
Bài 1: cho f(x) là đa thức với hệ số hữu tỉ. chứng minh rằng:
a, nếu f(x3) chia hết cho x-1 thì f(x3) chia hết cho x2 + x+1
b. chứng minh tổng quát nếu f(xn) chia hết cho x-1 thì f(xn) chia hết cho xn-1 + xn-2 +...+ x+1
Bài 2 chứng minh rằng xn -1 chia hết cho xm-1 khi và chỉ khi n chia hết cho m
Chứng minh rằng với mọi số nguyên thì x,y thì
a) x(x^2+x)+x(x+1)chia hết cho (x+1) b) xy^2-yx^2+xy chia hết cho xy
a) x(x² + x) + x(x + 1)
= x²(x + 1) + x(x + 1)
= (x + 1)(x² + x)
= x(x + 1)² ⋮ (x + 1)
b) xy² - yx² + xy
= xy(y - x + 1) ⋮ xy
Câu 1 : Tìm x biết
( x + 1 ) + ( x + 2 ) + ......... + ( x + 100 ) = 5750
Câu 2 :
a) Chứng minh rằng nếu : ( ab + cd + eg )chia hết cho 11 thì abcdeg chia hết cho 11
b) Chứng minh rằng : 10^28 + 8 chia hết cho 72
câu 1
(x+1)+(x+2)+...+(x+100)=5750
(x+x+...+x)+(1+2+3+...+99+100)=5750 (có 100 số x và từ 1 -100 có 100 số)
(x.100)+(1+100).100:2=5750
(x.100)+5050=5750
x.100=700
x=7
vậy........
câu 2
a)ta có
abcdeg=ab.10000+cd.100+eg
=9999.4b+99cd+ab+cd+eg
=(9999ab+99cd)+(ab+cd+eg)
ta thấy 9999ab+99cd\(⋮\)11 và ab+cd+eg cn vậy...
=>....
vậy...
b)ta có 10^3 chia hết cho 8
=>10^25.10^3 chia hết cho 8 (=10^28)
=>10^28+8 chia hết cho 28 (1)
ta có 10^28+8=10...08(27 cs 0)
=>10^28+8\(⋮\)9(2)
vì ưCLN(8;9)=1 (3)
từ (1)(2)(3) suy ra 10^28+8 chia hết cho 72
vậy.....
Mik nói thật nhé lũ CTV OLM n g u như c a k ấy
14 Chứng minh rằng (x^2+x-1)^10+(x^2-x+1)^10 chia hết cho x-1
chứng minh rằng x^2002 +x^2000 + 1 chia hết cho x^2 +x +1
chứng minh rằng X^2018 + X^2017+1 chia hết cho x^2 + x + 1
Tách x2018 + x2017 =x2016.(x2+x)
Rồi tự làm típ
a) Cho đẳng thức : x(x+1)(x+2)(x+3)...(x+2002) = 2002 ( với x>0)
Chứng minh rằng : x< 1 / 2001!
b) Cho 10m -1 chia hết cho 19. Chứng minh rằng 102m +18 chia hết cho 19.