\(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)
a) Rút gọn biểu thức
b) CMR nếu a là số nguyên thì giá trị của biểu thức tìm được của câu a, là 1 phân số tối giản.
\(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\) :
a) Rút gọn biểu thức .
b) CMR nếu a là số nguyên thì giá trị của biểu thức tìm được của câu a là 1 phân số tối giản .
Máy mik bị lag chữ a, mik thay bằng chữ x nha
a/
\(\frac{x^3+2x^2-1}{x^3+2x^2+2x+1}=\frac{x^3+x^2+x^2-1}{x^3+1+2x\left[x+1\right]}\)
\(=\frac{\left[x^3-x^2\right]+\left[x^2-x\right]+\left[x-1\right]}{\left[x^3+x^2\right]-\left[x^2+x\right]+\left[x+1\right]+2x\left[x+1\right]}\)
\(=\frac{x^2\left[x-1\right]+x\left[x-1\right]+\left[x-1\right]}{x^2\left[x+1\right]-x\left[x+1\right]+\left[x+1\right]+2x\left[x+1\right]}\)
\(=\frac{x^2\left[x+1\right]+\left[x-1\right]\left[x+1\right]}{\left[x^2-x+1+2x\right]\left[x+1\right]}\)
\(=\frac{\left[x+1\right]\left[x^2+x-1\right]}{\left[x+1\right]\left[x^2+x+1\right]}=\frac{x^2+x-1}{x^2+x+1}\)
x khác -1 bạn nhé [ví x = -1 thí ps k có giá trị]
b/
Gọi d là \(UCLN\left[x^2+x-1;x^2+x+1\right]\)
Mà \(x^2+x-1=x\left[x+1\right]-1lẻ⋮d\Rightarrow dlẻ\)
Mặt khác: \(x^2+x+1-\left[x^2+x-1\right]=2⋮d\)
=> d = 1
=> Phân số \(\frac{x^2+x-1}{x^2+x+1}\)
Tối giản khi x nguyên
Pạn thay x thành a giùm, cảm ơn
Cho biểu thức:
A=a^3+2a^2-1/a^3+2a^2+2a+1
a) Rút gọn biểu thức
b) Cmr nếu a là số nguyên thì giá trị của biểu thức tìm được ở câu a là một phân số tối giản.
cho biểu thức A=\(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)
a)rút gọn biểu
b)CMR nếu a là số nguyên thì giá trị của biểu thức tìm được của câu a là một phân số tối giản
\(a.\) Điều kiện xác định: \(a\ne-1\)
Khi đó, ta có:
\(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{\left(a^3+a^2\right)+\left(a^2-1\right)}{\left(a^3+a^2\right)+\left(a^2+a\right)+\left(a+1\right)}=\frac{a^2\left(a+1\right)+\left(a-1\right)\left(a+1\right)}{a^2\left(a+1\right)+a\left(a+1\right)+\left(a+1\right)}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)
\(b.\) Gọi \(d\) là ước chung lớn nhất của \(a^2+a+1\) và \(a^2+a-1\)
Mà \(a^2+a-1=a\left(a+1\right)-1\) là số lẻ (do \(a\left(a+1\right)\) là tích của hai số nguyên liên tiếp với \(a\in Z\) ) nên \(d\) là số lẻ
Mặt khác, \(\left[\left(a^2+a+1\right)-\left(a^2+a-1\right)\right]\) chia hết cho \(d\)
\(\Leftrightarrow\) \(2\) chia hết cho \(d\)
\(\Rightarrow\) \(d=1\) hoặc \(d=2\)
Vì \(d\) là số lẻ (cm trên) nên \(d=1\), tức là \(a^2+a+1\) và \(a^2+a-1\) nguyên tố cùng nhau
Vậy, biểu thức \(A\) là phân số tối giản.
\(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)
a/ Rút gọn biểu thức
b/ CMR nếu a là nguyên âm thì giá trị của biểu thức tìm đc câu a là 1 phân số tối giản
a: \(A=\dfrac{a^3+a^2+a^2+a-a-1}{\left(a+1\right)\left(a^2-a+1\right)+2a\left(a+1\right)}\)
\(=\dfrac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\dfrac{a^2+a-1}{a^2+a+1}\)
b: Nếu a là số nguyên âm thì a<0
Vì a2+a=a(a+1) chia hết cho 2 nên \(a^2+a-1;a^2+a+1\) là hai số tự nhiên lẻ liên tiếp
hay A là phân số tối giản
Cho biểu thức: \(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)
a) Rút gọn biểu thức
b) CMR: nếu a là số ngyên thì giá trị của biểu thức tìm được của câu a) là một phân số tối giản.
Ta có: =
Điều kiện đúng a ≠ -1 ( 0,25 điểm).
Rút gọn đúng cho 0,75 điểm.
b.Gọi d là ước chung lớn nhất của a2 + a – 1 và a2+a +1
Vì a2 + a – 1 = a(a+1) – 1 là số lẻ nên d là số lẻ
Mặt khác, 2 = [ a2+a +1 – (a2 + a – 1) ] d
Nên d = 1 tức là a2 + a + 1 và a2 + a – 1 nguyên tố cùng nhau.
Vậy biểu thức A là phân số tối giản.
Câu 1 : Cho biểu thức :
A= a^3+2a^2-1/ a^3+2a^2+2a+1
a/ Rút gọn biểu thức
B/ CMR nếu a là số nguyên âm thì giá trị biểu thức tìm đc của câu a là 1 phân số tối giản
Cái đề này không rõ nhé bạn! Bạn ghi lại đề bằng fx nhé
Có đầy câu hỏi tương tự đáy bạn lên các câu hỏi đó mà xem
cho biểu thức A= \(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)
a, Rút gọn biểu thức
b, C\m rằng nếu a là số nguyên thì giá trị của biểu thức tìm được của câu a,là 1 phân số tối giản
Giải \(A=\frac{a^3+2a^2-1}{a^3+2a^22a+1}\) \(A=\frac{\left(a^3+a^2\right)+\left(a^2-1\right)}{\left(a^3+a^2\right)+\left(a^2+a\right)+\left(a+1\right)}\) \(A=\frac{a^2\left(a+1\right)\left(a+1\right)\left(a+1\right)}{a^2\left(a+1\right)+a\left(a+1\right)+\left(a+1\right)}\) \(A=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2 +a+1\right)}\) \(A=\frac{a^2+a-1}{a^2+a+1}\) b, Gọi d là ƯCLN \(\left(a^2+a-1;a^2+a+1\right)\) \(\Rightarrow\)\(a^2+a-1⋮d\) \(a^2+a+1⋮d\) \(\Rightarrow\left(a^2+a+1\right)-\left(a^2+a-1\right)⋮d\) \(\Rightarrow2⋮d\) \(\Rightarrow d=1\) hoặc d=2 Nhận xét : \(a^2+a-1=a\left(a+1\right)-1\) Với số nguyên a ta có :a(a+1) là tích 2 số nguyên liên tiếp \(\Rightarrow a\left(a+1\right)⋮2\) \(\Rightarrow a\left(a+1\right)-1\) lẻ \(\Rightarrow a^2+a-1\) lẻ \(\Rightarrow\) d không thể bằng 2 Vậy d=1 (đpcm)
Cho biểu thức: \(A=\frac{a^3+2a^2-1}{a^3+2a^3+2a+1}\)
a. Rút gọn biểu thức.
b. Chứng minh rằng nếu a là số nguyên thì giá trị của biểu thức tìm được của câu a, là một phân số tối giản.
a. Ta có biến đổi:
\(A=\frac{a^3+2a^2-1}{a^3+2a^3+2a+1}\)
\(A=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}\)
\(A=\frac{a^2+a-1}{a^2+a+1}\)
b. Gọi d là ước chung lớn nhất của \(a^2+a-1\)và \(a^2+a+1\)
Vì \(a^2+a-1=a\left(a+1\right)-1\)là số lẻ nên d là số lẻ
Mặt khác, \(2=\left[a^2+a+1-\left(a^2+a-1\right)\right]⋮d\)
Nên d = 1 tức là \(a^2+a+1\)và \(a^2+a-1\)nguyên tố cùng nhau.
Vậy biểu thức A là phân số tối giản.
cái này rất dễ mình tin bạn có thể giải được mà
a,Rút gọn biểu thức A=a^3+2a^3-1/a^3+2a^2+2a+1
b,chứng minh rằng nếu a là số nguyên thì giá trị của biểu thức tìm được ở câu a là 1 phân số tối giản