Cho đường tròn (O;R) (điểm O cố định, giá trị không đổi) và điểm M nằm ngoài (O). Kẻ hai tiếp tuyến MB, MC (B,C là các tiếp điểm) của (O) và tia Mx nằm giữa hai tia MO và MC. Qua B kẻ đường thẳng song song với Mx, đường thẳng này cắt (O) tại điểm thứ hai là A. Vẽ đường kính BB' của (O). Qua O kẻ đường thẳng vuông góc với BB', đường thẳng này cắt MC và B'C lần lượt tại K và E. Chứng minh rằng:
1. 4 điểm M,B,O,C cùng nằm trên 1 đường tròn.
2. ME=R
3. Khi điểm M di động mà OM=2R thì điểm K di động trên một đường tròn cố định, chỉ rõ tâm và bán kính của đường tròn đó.
Làm giúp em câu 3 thôi ạ. Em cảm ơn trước ạ.