cho a>b >c và a2 - 6b2 =ab . tinh gt của bieu thuc a= 2ab/ a^2 -7b^2
cho a>b>0 và a^2-6b^2=ab. Tính giá trị biểu thức : A=(2ab)/(a^2-7b^2). Tính giá trị biểu thức : A=(2ab)/(a^2-7b^2)
cho 2 so a, b thoa man a+b=7a-7b va 7ab=24(a+b). Tinh gia tri cua bieu thuc P=a^2+b^2
Ta có:
a + b = 7a - 7 b
=> a - 7a = -7b - b
=> -6a = -8b
=> 6a = 8b
\(\Rightarrow\frac{a}{b}=\frac{4}{3}\)
\(\Rightarrow\frac{a}{4}=\frac{b}{3}\)
Đặt \(\frac{a}{4}=\frac{b}{3}=k\) ( \(k\inℝ\) )
=> a = 4k và b = 3k
Thay a = 4k và b = 3k vào 7ab = 24(a+b)
=> ta có: 7.4k.3k=24.(4k+3k)
=> 84k2 = 168k
=> 84k = 168 ( chia cả 2 vế cho k )
=> k = 2
=> a = 8 và b = 6
Giá trị của biểu thức P = 82 + 62 = 100
Vậy: P = 100
giúp mình với
cho a,b,c >0 thoa man dieu kien a^2 +b^2 +c^2 = 1
tinh gia tri nho nhat cua bieu thuc A= ab/c + bc/a + ca/b
Cho a^2 + b^2 + c^2 = a^3 + b^3 + c^3 = 1. tinh gt cac bieu thuc : C = a^2 + b^9 + c^1945.
cho a,b,c khac nhau doi mot va 1/a+1/b+1/c=0.rut gon cac bieu thuc
N=bc/a^2+2bc+CA/B^2+2AC+AB/C^2+2AB
cho a,b,c khac 0 thoai man ab/a+b=bc/b+c=ca/c+a
tinh gia tri bieu thuc m=ab+bc+ca/a^2+b^2+c^2
cho biet a,b,c >0 dieu kien \(a^2+b^2+c^2=1\)Tinh GTNN cua bieu thuc A = \(\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\)
\(A^2=\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{c^2a^2}{b^2}+2\left(b^2+c^2+a^2\right)=\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{c^2a^2}{b^2}+2\)
Áp dụng Côsi: \(\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}\ge2\sqrt{\frac{a^2b^2}{c^2}.\frac{b^2c^2}{a^2}}=2\sqrt{b^4}=2b^2\)
Tương tự \(\frac{b^2c^2}{a^2}+\frac{c^2a^2}{b^2}\ge2c^2;\text{ }\frac{c^2a^2}{b^2}+\frac{a^2b^2}{c^2}\ge2a^2\)
\(\Rightarrow2\left(\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{c^2a^2}{b^2}\right)\ge2\left(a^2+b^2+c^2\right)=2\)
\(\Rightarrow\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{c^2a^2}{b^2}\ge1\)
\(\Rightarrow A^2\ge1+2=3\)
\(\Rightarrow A\ge\sqrt{3}\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c=\frac{1}{\sqrt{3}}\)
cho cac bieu thuc: P=(a+1)^2+(b+1)^2+2(ab+ac+bc) Q=(a+b+c+1)^2. tinh P-Q
rut gon bieu thuc
(a+b-c)^2 - (a-c)^2- 2ab+ 2bc
\(\left(a+b-c\right)^2-\left(a-c\right)^2-2ab+2bc\)
\(=\left(a-c\right)^2+2b\left(a-c\right)+b^2-\left(a-c\right)^2-2ab+2bc\)
\(=2b\left(a-c\right)+b^2-2ab+2bc\)
\(=2ab-2bc+b^2-2ab+2bc=b^2\)