Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Jenduekie
Xem chi tiết
Jenduekie
Xem chi tiết
Hiếu
Xem chi tiết
Jenduekie
Xem chi tiết
Huy Hoàng Đỗ
Xem chi tiết
Bùi Nguyễn Việt Anh
Xem chi tiết
Mai Huyền My
Xem chi tiết
Trần Quốc Lộc
28 tháng 5 2018 lúc 16:10

A B C D E F I K

a) Áp dụng hệ quả định lý \(Ta-lét\) vào \(\Delta BEC\)\(AD//BE\left(gt\right)\) \(\Rightarrow\dfrac{AD}{BE}=\dfrac{CD}{BC}\left(2\right)\)

Áp dụng hệ quả định lý \(Ta-lét\) vào \(\Delta BFC\)\(AD//CF\left(gt\right)\) \(\Rightarrow\dfrac{AD}{CF}=\dfrac{BD}{BC}\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\Rightarrow\dfrac{AD}{BE}+\dfrac{AD}{CF}=\dfrac{CD}{BC}+\dfrac{BD}{BC}\)

\(\Rightarrow AD\left(\dfrac{1}{BE}+\dfrac{1}{CF}\right)=\dfrac{CD+BD}{BC}=\dfrac{BC}{BC}=1\\ \Rightarrow\dfrac{1}{BE}+\dfrac{1}{CF}=\dfrac{1}{AD}\left(đpcm\right)\)

b) Áp dụng hệ quả định lý \(Ta-lét\) vào \(\Delta BAE\)\(BE//CF\left(gt\right)\) \(\Rightarrow\dfrac{AE}{AC}=\dfrac{AF}{\: AB}\)

Xét \(\Delta EAF\)\(\Delta CAB\) có: \(\left\{{}\begin{matrix}\dfrac{AE}{AC}=\dfrac{AF}{\: AB}\left(\text{Chứng minh trên}\right)\\\widehat{EAF}=\widehat{CAB}\left(\text{2 góc đối đỉnh}\right)\end{matrix}\right.\)

\(\Rightarrow\Delta EAF\sim\Delta CAB\left(c.g.c\right)\\ \Rightarrow\widehat{AEF}=\widehat{ACB}\left(\text{2 góc tương ứng}\right)\\ \Rightarrow EF//BC\left(\text{2 góc so le trong}\right)\)

\(BE//CF\left(gt\right)\)

\(\Rightarrow\text{Tứ giác }BECF\text{ là hình bình hành}\left(\text{Dấu hiệu nhận biết}\right)\\ \Rightarrow A\text{ là trung điểm }EC\left(\text{Tính chất đường chéo hình bình hành}\right)\\ \Rightarrow AC=\dfrac{1}{2}AE\\ \Rightarrow S_{ABC}=\dfrac{1}{2}S_{BEC}\left(\text{Chung đường cao hạ từ B xuống EC}\right)\left(5\right)\)

Từ \(E\) kẻ \(EI\perp BC\Rightarrow EI\) là đường cao ứng với \(BC\) của \(\Delta EBC\)

Từ \(D\) kẻ \(DK\perp EF\Rightarrow DK\) là đường cao ứng với \(EF\) của \(\Delta EDF\)

Ta có : \(DI//EK\left(I\in BC;K\in EF;BC//EF\right)\left(3\right)\)

\(\Rightarrow EI\perp EK\left(EI\perp DI\right)\\ \Rightarrow EI//DK\left(\text{Cùng }\perp EK\right)\left(4\right)\)

Từ \(\left(3\right)\)\(\left(4\right)\Rightarrow\text{Tứ giác }DIEK\text{ là hình bình hành}\left(\text{Dấu hiệu nhận biết}\right)\)\(\Rightarrow DI=EK\left(\text{2 cạnh đối hình bình hành}\right)\)

\(EF=BC\left(\text{2 cạnh đối hình bình hành}\right)\)

\(\Rightarrow S_{DEF}=S_{EBC}\left(6\right)\)

Từ \(\left(5\right)\)\(\left(6\right)\Rightarrow S_{ABC}=\dfrac{1}{2}S_{DEF}\)

\(\Rightarrow S_{DEF}=2S_{ABC}\left(đpcm\right)\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 11 2017 lúc 12:32

LuKenz
Xem chi tiết