Chứng minh: 2090^n-803^n-464^n+261^n chia hết cho 271
1. Dùng đồng dư thức chứng minh rằng:
a, Bình phương 1 số tự nhiên chia cho 3 dư 0 hoặc 1
b, A= 2090^n-803^n-464^n+261^n chia hết cho 271
Chứng minh rằng: 2090^n - 803^n - 464^1 +261^n chia hết cho 27 . Với mọi n thuộc N*
câu 1: chứng minh rằng
a) 3012^93 - 1 chia hết cho 13
b) 2090^n - 803^n - 464^n + 201^n chia hết cho 271 (n thuộc N*)
CMR:2090n-803n-464n+261n chia hết cho 17 với n là số tự nhiên khác 0 ?
chứng minh 2090^n-803^n-404^n+201^n chia hết 271
CMR
2093^n-803^n-464^n-261^n chia hết cho 271
chứng minh
6^2n + 3^n+2 . 3^n chia hết cho 11
3012^93 - 1 chia hết cho 9
5^2n+1.2^n+2 + 3^n+2 . 2^2n+1 chia hết cho 19
2093^n - 803^n - 464^n - 261^n chia hết cho 271
ý 3 tớ không biết chia hết cho 9 hay là 19 ấy nhé
chứng minh rằng \(^{2090^n-803^n-464^n+261^n⋮27}\)
trình bày cụ thể nhé
1: Chứng minh rằng
a,301293-1chia hết cho 13
b, 2090n-803n-464n+261n chia hết cho 271
2: chứng minh rằng
a,5n+2+26×5n+82n-1 chia hết cho59
b, 13n+2+142n+1 chia hết cho 183
3: chứng minh rằng 2^2^2n+10 chia hết cho 13