Cho hàm số y=x2 (P)
y=4x+m (dm)
tìm tất cả các giá trị của m sao cho (dm) cắt (P) tại hai điểm phân biệt , trong đó tung độ của một trong hai giao điểm đó bằng 1
Cho hàm số ( P ) : y = x2 và hàm số (D) : y = 4x + m
Tìm tất cả các giá trị của m sao cho ( D) và P cắt nhau tại 2 điểm phân biệt , trong đó tung độ của một trong 2 giao điểm đó bằng 1
xset pt tg giao đc đk của m là m > -4
áp dụng viet ;
x1 .x2 = -m
x1 + x2 =4
vì tọa độ cát có tung độ là 1 suy ra x1 hoắc x2 =1 thế vào viet tìm m = -3 ( tm m > -4 )suy ra m =-3 thf cắt tại 2 điểm pb trong đó....
Bài 1: Cho hàm số y=x2 có đồ thị (P) và hàm số y=4x+m có đồ thị (dm) Tìm tất cả các giá trị của m sao cho (dm) và (P) cắt nhau tại hai điểm phân biệt, trong đó trung độ của một trong hai giao điểm đó bằng 1 Bài 2: Trong mặt phẳng Oxy cho parapol (P): y=x2 Trên (P) lấy điểm A có hoành độ xA =-2. Tìm tọa độ điểm M trên trục Ox sao cho |MA-MB| đạt giá trị lớn nhất, biết B(1;1) Bài 3: Tìm a và b để đường thẳng (d): y=(a-2)x+b có hệ số góc bằng 4 và đi qua điểm M(1;-3) Bài 4:Cho hàm số y=2x-5 có đồ thị là đường thẳng (d) a.Gọi A,B lần lượt là giao điểm của (d) với các trục tọa độ Ox,Oy. Tính tọa độ các điểm A,B và vẽ đường thẳng (d) trong mặt phẳng tọa độ Oxy b.Tính diện tích tam giác AOB HELP!!
Bài 1: Cho hàm số y=x2 có đồ thị (P) và hàm số y=4x+m có đồ thị (dm) Tìm tất cả các giá trị của m sao cho (dm) và (P) cắt nhau tại hai điểm phân biệt, trong đó trung độ của một trong hai giao điểm đó bằng 1 Bài 2: Trong mặt phẳng Oxy cho parapol (P): y=x2 Trên (P) lấy điểm A có hoành độ xA =-2. Tìm tọa độ điểm M trên trục Ox sao cho |MA-MB| đạt giá trị lớn nhất, biết B(1;1) Bài 3: Tìm a và b để đường thẳng (d): y=(a-2)x+b có hệ số góc bằng 4 và đi qua điểm M(1;-3) Bài 4:Cho hàm số y=2x-5 có đồ thị là đường thẳng (d) a.Gọi A,B lần lượt là giao điểm của (d) với các trục tọa độ Ox,Oy. Tính tọa độ các điểm A,B và vẽ đường thẳng (d) trong mặt phẳng tọa độ Oxy b.Tính diện tích tam giác AOB HELP!!
Theo Cô si 4x+\frac{1}{4x}\ge2 , đẳng thức xảy ra khi và chỉ khi 4x=\frac{1}{4x}=1\Leftrightarrow x=\frac{1}{4}). Do đó
A\ge2-\frac{4\sqrt{x}+3}{x+1}+2016
A\ge4-\frac{4\sqrt{x}+3}{x+1}+2014
A\ge\frac{4x-4\sqrt{x}+1}{x+1}+2014=\frac{\left(2\sqrt{x}-1\right)^2}{x+1}+2014\ge2014
Hơn nữa A=2014 khi và chỉ khi \left\{{}\begin{matrix}x=\dfrac{1}{4}\\2\sqrt{x}-1=0\end{matrix}\right. \Leftrightarrow x=\dfrac{1}{4} .
Vậy GTNN = 2014
Cho hàm số: y = x2 có đồ thị (P) và hàm số y = 4x + m có đồ thị (dm)
Vẽ đồ thị (P).Tìm tất cả các giái trị của m sao cho (dm) và (P) cắt nhau tại hai điểm phân biệt, trong đó tung độ của một trong hai giao điểm đó bằng 1.1, bạn tự vẽ nha
2, xét pt: \(x^2=4x+m\Leftrightarrow x^2-4x-m=0\)(1) ; \(\Delta=16-4.-m=16+16m\)
(dm) và (P) cắt nhau tại hai điểm phân biệt <=> pt có 2 nghiệm p.biệt <=> \(\Delta>0\Leftrightarrow16+16m>0\Leftrightarrow m>-1\)
th1: chọn tung độ của giao điểm 1 là 1 <=> y1=1<=> \(x1=\sqrt{y1}=\sqrt{1}=1\); \(x1=\frac{4+\sqrt{16\left(m+1\right)}}{2}=\frac{4\left(1+\sqrt{m+1}\right)}{2}=2+2\sqrt{m+1}\)
thay x=1 vào ta có: \(2+2\sqrt{m+1}=1\Leftrightarrow2\sqrt{m+1}=-1\Rightarrow\)PTVN
th2: y2=1 <=> x2=1
\(x2=\frac{4-\sqrt{16\left(m+1\right)}}{2}=2-2\sqrt{m+1}\). thay x2=1 vào: \(2-2\sqrt{m+1}=1\Leftrightarrow-2\sqrt{m+1}=-1\Leftrightarrow\sqrt{m+1}=\frac{1}{2}\Leftrightarrow m+1=\frac{1}{4}\Leftrightarrow m=-\frac{3}{4}\)(t/m đk)
=> m=-3/4 thì (dm) và (P) cắt nhau tại hai điểm phân biệt, trong đó tung độ của một trong hai giao điểm đó bằng 1.
16-4(-m)=16+16m ??:D??
cho (P) y = x^2 và (d) y=4x=m. tìm m để (P) và (d) cắt nhau tại hai điểm phân biệt trong đó tung độ một trong hai giao điểm bằng 1
Cho hai hàm số bậc nhất y = -5x+m+1 vay 4x+7- m (m là tham số). Với giá trị nào của m thì hai đồ thị hàm số trên cắt nhau tại một điểm trên trục tung. Tìm tọa độ giao diêm đó
Hai ham số cắt nhau tại một điểm tại trục tung => x=0
=> (d1): y=-5x+m+1= -5.0+m+1 = m+1
(d2): y= 4x+7-m= 4.0+7 - m = 7-m
(d1) cắt (d2) tại 1 điểm trên trục tung: <=> m+1 = 7 - m
<=> m+m= 7 - 1
<=>2m=6
<=>m=3
Vậy: y=4x+7-m=4.0+7-3=4
=> Toạ độ giao điểm: V(0;4)
Điểm nằm trên trục tung thì có hoành độ bằng 0
Phương trình hoành độ giao điểm của hai hàm số:
-5x + m + 1 = 4x + 7 - m (1)
Thay x = 0 vào (1) ta có:
m + 1 = 7 - m
⇔ m + m = 7 - 1
⇔ 2m = 6
⇔ m = 6 : 2
⇔ m = 3
Vậy m = 3 thì hai đồ thị cắt nhau tại một điểm trên trục tung
Cho hai hàm số: y=x2 -2xvà y=x3 - x2 -(m+4)x+m-1 (với m là tham số). Có bao nhiêu giá trị của để đồ thị của hai hàm số đã cho cắt nhau tại ba điểm phân biệt và ba giao điểm đó nằm trên một đường tròn bán kính bằng \(\sqrt{5}\)?
Cho hàm số y= x4-2( m+1)x2+ m ( C). Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số C có ba điểm cực trị A: B; C sao cho OA= BC ; trong đó O là gốc tọa độ, A là điểm cực trị thuộc trục tung, B và C là hai điểm cực trị còn lại.
A. m = 2 ± 2 2
B. m = 2 + 2 2
C. m = 2 - 2 2
D. m = ± 1
Ta có : y’ = 4x3-4( m+ 1) x= 4x( x2- (m+ 1) ).
Hàm số có điểm cực trị khi và chỉ khi y’ = 0 có nghiệm phân biệt hay m+1> 0 suy ra m> - 1. (*)
Khi đó, ta có:
Do đó O A = B C ⇔ m = 2 m + 1 ⇔ m 2 - 4 m - 4 = 0 ( ∆ ' = 8 ) ⇔ m = 2 ± 2 2 (thỏa mãn (*)).
Vậy m = 2 ± 2 2 .
Chọn A.
Cho hàm số y = x 4 - 2 ( m + 1 ) x 2 + m ( C ) . Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số (C) có ba điểm cực trị A, B, C sao cho OA = BC; trong đó O là gốc tọa độ, A là điểm cực trị thuộc trục tung, B và C là hai điểm cực trị còn lại
A. m = 2 ± 2 2
B. m = 2 + 2 2
C. m = 2 - 2 2
D. m = ± 1
Chọn A
Ta có:
Hàm số có 3 điểm cực trị khi và chỉ khi :
y ' có 3 nghiệm phân biệt
⇔ m + 1 > 0 ⇔ m > - 1 ( * )
Khi đó, ta có y ' = 0
(vai trò của B, C trong bài toán là như nhau ) nên ta giả sử
Ta có: O A ( 0 ; m ) ⇒ O A = m ⇒ B C = 2 m + 1
Do đó OA = BC
⇔ m = 2 ± 2 2 ( t h ỏ a m ã n ) ( * )
Vậy m = 2 ± 2 2