nếu a chia 13 dư 2 và b chia 13 dư 3 thì a^2+b^2 chia hết cho 13
Cho a,b là các số nguyên:
a,chứng minh rằng nếu a chia 13 dư 2 và b chia 13 dư 3 thì a^2 + b^2 chia hết cho 13.
b, chứng minh rằng nếu a chia 19 dư 3, b chia cho 19 dư 2 thì a^2 + b^2 + ab chia hết cho 19
bài này thử là nhanh nhất (hi hi , mình đùa vui thôi chứ minh ko bít làm)
Câu a) a chia 13 dư 2 thì a2 chia 13 dư 4
b chia 13 dư 3 thì b2 chia 13 dư 9. Vậy a2 + b2 chia hết cho 13
Câu b) tương tự nhé bạn.
Nếu a : 13 dư 2 và b chia 13 dư 3 thì a^2 + b^2 chia hết cho 13
Ta có : ( sử dụng tính chất đồng dư ) a đồng dư 2(mod 13 ) suy ra a^2 đồng dư 2^2(mod 13 ) Tương tự có b^2 đồng dư 9 ( mod 13) .
Do đó a^2 + b^2 đồng dư 9 + 4 ( mod 13 ) hay a^2 + b^2 đồng dư 13 ( mod 13 ) . Mà 13 chia hết cho 13 suy ra a^2 + b^2 chia hết cho 13 ( đpcm )
Goi a : 13 =x dư 2 =>a=13x+2
Gọi b:13 =y dư 3 => b=13y+3
a^2+b^2=(13x+2)^2+(13x+3)^2=169x^2+46x+4+169x^2+78x+9 chia hết cho 13
a)cho a, b là các số nguyên, chứng minh rằng nếu a chia cho 13 dư 2 và b chia cho 13 dư 3 thì a^2 + b^2 chia hết cho 13
b) Cho a,b là các số nguyên . Chứng minh rằng nếu a chia cho 19 dư 3 , b chia cho 19 dư 2 thì a^2 + b^2 + ab chia hết cho 19
c) chứng minh rằng nếu tổng của hai số nguyên chia hết cho 3 thì tổng các lập phương của chúng chia hết cho 3
câu 1. Cho a và b là các số nguyên. Cmr: nếu (2a+b) chia hết cho 13 và (5a-4b) chia hết cho 13 thì (a-6b) chia hết cho 13
câu 2. xác định các hệ số a và b sao cho \(2x^3+ax+b\) chia cho (x+1) dư -6 và chia cho (x-1) dư 21
1) một số chia cho 4 dư 3, chia cho 17 dư 9, chia cho 19 dư 13, chia cho 1292 dư bao nhiêu ?
2) chứng tỏ rằng nếu 2a - 3b chia hết cho 13 thì 8a - b chia hết cho 13
1) Gọi số cần tìm là A(A thuộc N)
Vì A chia 4 dư 3, ... nên A + 8 chia hết cho 4, 17, 19.
=> A + 8 chia hết cho 1292 (ƯCLN(4; 17; 19) = 1)
Số dư của A khi chia cho 1292 là:
1292 - 8 = 1284
Vậy A chia 1292 dư 1284.
2) Vì 2a - 3b chia hết cho 13 nên 4(2a - 3b) chia hết cho 13.
Xét tổng:
4(2a - 3b) - (8a - b)
= 8a - 12b - 8a + b
= (12b + b) - (8a - 8a)
= 13b chia hết cho 13.
Mà 4(2a -3b) chia hết cho 13 nên 8a - b chia hết cho 13(ĐPCM)
Tick ủng hộ mình nha
lương thế quyền sai bét a chia 4 dư 3 thì a+8 chia 4 vẫn dư 3 thôi
a) Tìm số nguyên a,b thỏa mãn \(a=\frac{b^2+b+1}{b+1}\)
b) Đặt B= a3 + 3a2 + 5a + 3 . Chứng minh rằng B chia hết cho 3 với mọi giá trị nguyên dương của a
c) Nếu a chia 13 dư 2 và b chia 13 dư 3 thì a2+b2 chia hết cho 13
a) Tìm số nguyên a,b thỏa mãn \(a=\frac{b^2+b+1}{b+1}\)
b) Đặt B= a3 + 3a2 + 5a + 3 . Chứng minh rằng B chia hết cho 3 với mọi giá trị nguyên dương của a
c) Nếu a chia 13 dư 2 và b chia 13 dư 3 thì a2+b2 chia hết cho 13
a và b là 2 số nguyên :
1. nếu a chia hết 13 dư 2 và b chia hết 13 dưa 3 thì a2 + b2 chia hết cho 13
2. 10a2 + 5a2 + 12ab + 4a - 6b + 13 >= 0
dấu " = " xảy ra khi nào
Đề: Một số tự nhiên chia cho 7 thì dư 5, chia cho 13 thì dư 4. Nếu đem chia số đó cho 91 thì dư mấy?
bài giải
Theo đề bài ta có:
a : 7 (dư 5)
a : 13 (dư 4)
=> a + 9 chia hết cho 7 và 13.
7 và 13 đều là số nguyên tố => a + 9 chia hết cho 7 x 13 = 91.
=> a chia cho 91 dư 91-9 = 82.
Vậy số tự nhiên đó chia cho 7 dư 5, chia cho 13 dư 4. Nếu đem chia số đó cho 91 dư 82.
Các bạn ơi mình ko hiểu cách giải tí nào luôn ý, giảng cho mình cái chỗ sao lại ra a + 9 chia hết cho 7 và 13.
7 và 13 đều là số nguyên tố => a + 9 chia hết cho 7 x 13 = 91.
=> a chia cho 91 dư 91-9 = 82. được ko?làm ơn đấy!
Theo đề bài ta có:
a : 7 (dư 5)
a : 13 (dư 4)
=> a + 9 chia hết cho 7 và 13.
7 và 13 đều là số nguyên tố => a + 9 chia hết cho 7 x 13 = 91.
=> a chia cho 91 dư 91-9 = 82.
Vậy số tự nhiên đó chia cho 7 dư 5, chia cho 13 dư 4. Nếu đem chia số đó cho 91 dư 82.
Các bạn ơi mình ko hiểu cách giải tí nào luôn ý, giảng cho mình cái chỗ sao lại ra a + 9 chia hết cho 7 và 13.
7 và 13 đều là số nguyên tố => a + 9 chia hết cho 7 x 13 = 91.
=> a chia cho 91 dư 91-9 = 82.