3. Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của biến:
\(\left(3x^2-3x+7\right)-\left(4x^2-5x+3\right)+\left(x^2-2x\right)\)
Chứng minh giá trị biểu thức \(p=\left(x-2\right)\left(x+3\right)+\left(x+1\right)^2-2x^2-3x\) không phụ thuộc vào giá trị của biến
\(p=\left(x-2\right)\left(x+3\right)+\left(x+1\right)^2-2x^2-3x\\ =x^2-2x+3x-6+x^2+2x+1-2x^2-3x\\ =\left(x^2+x^2-2x^2\right)+\left(-2x+2x\right)+\left(3x-3x\right)+\left(-6+1\right)\\ =-5\)
Vậy biểu thức không phụ thuộc vào biến
chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của biến
\(\left(2-x\right)\left(1+2x\right)+\left(1+x\right)-\left(x^4+x^3-5x^2-5\right)\)
Chứng minh giá trị của biểu thức sau không phụ thuộc vào biến:
a) \(\left(3x-5\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)\)
b) \(\left(2x+3\right)\left(4x^2-6x+9\right)-2\left(4x^3-1\right)\)
Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của biến :
\(\left(x-5\right)\left(2x+3\right)-2x\left(x-3\right)+x+7\)
(x - 5)(2x + 3) - 2x(x - 3) + x + 7
= 2x2 + 3x – 10x – 15 – 2x2 + 6x + x + 7
= 2x2 – 2x2 – 7x + 7x – 15 + 7 = -8
Vậy sau khi rút gọn biểu thức ta được hằng số -8 nên giá trị biểu thức không phụ thuộc vào giá trị của biến
(x - 5)(2x + 3) - 2x(x - 3) + x + 7
= 2x2 + 3x – 10x – 15 – 2x2 + 6x + x + 7
= 2x2 – 2x2 – 7x + 7x – 15 + 7 = -8
Vậy sau khi rút gọn biểu thức ta được hằng số -8 nên giá trị biểu thức không phụ thuộc vào giá trị của biến.
(x-5)(2x+3)-2x(x-3)+x+7
= 2x2+3x-10x-15-2x2+6x+x+7
= (2x2-2x2)+(6x+x+3x-10x)-(15-7)
= 0+0-8
= -8
vậy giá trị của biểu thức (x-5)(2x+3)-2x(x-3)+x+7 không phụ thuộc vào giá trị của biến
xem xét giá trị của các biểu thức sau đây có phụ thuộc vào giá trị của biến x hay không?
a) \(3x\left(x+5\right)-\left(3x+18\right)\left(x-1\right)\)
b) \(2x\left(x+3\right)-\left(x-5\right)\left(7+2x\right)\)
c) \(5x\left(x^2-7x+2\right)-x^2\left(5x-8\right)+27x^2-10x\)
Bài làm:
a) \(3x\left(x+5\right)-\left(3x+18\right)\left(x-1\right)\)
\(=3x^2+15x-3x^2+3x-18x+18\)
\(=18\)=> không phụ thuộc GT biến
b) \(2x\left(x+3\right)-\left(x-5\right)\left(7+2x\right)\)
\(=2x^2+6x-7x-2x^2+35+10x\)
\(=9x+35\)=> có phụ thuộc GT biến
c) \(5x\left(x^2-7x+2\right)-x^2\left(5x-8\right)+27x^2-10x\)
\(=5x^3-35x^2+10x-5x^3+8x^2+27x^2-10x\)
\(=0\)=> không phụ thuộc GT biến
cho mk hỏi tại sao chỗ (3x+18)(x-1) bạn lại ra được 3x2+3x -18x+18
\(a,3x\left(x+5\right)-\left(3x+18\right)\left(x-1\right)\)
\(=3x^2+15x-3x^2-3x+18x-18\)
\(=30x+18\)
\(b,2x\left(x+3\right)-\left(x-5\right)\left(7+2x\right)\)
\(=2x^2+6x-7x+2x^2-35+10x\)
\(=4x^2+9x-35\)
\(c,5x\left(x^2-7x+2\right)-x^2\left(5x-8\right)+27x^2-10x\)
\(=5x^3-35x^2+10x-5x^3-8x^2+27x^2-10x\)
\(=-8x^2\)
Chứng minh rằng biểu thức sau không phụ thuộc vào giá trị của biến x
\(\left(3x+1\right)^2+12x-\left(3x+5\right)^2+2\left(6x+3\right)\)
Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của các biến (với điều kiện xy\(\ne\)0;+ -3/2 y;x\(\ne\)-y
\(\frac{5x\left(2x-3y\right)^2}{3y\left(4x^2-9y^2\right)}:\frac{\left(2x^2+2xy\right)\left(2x-3y\right)}{2x^2y+5xy^2+3y^3}\)
Với điều kiện xy\(\ne\)0;+ -3/2 y;x\(\ne\)-y các phân thức có nghĩa. Ta có
\(\frac{5x\left(2x-3y\right)^2}{3y\left(4x^2-9y^2\right)}:\frac{\left(2x^2+2xy\right)\left(2x-3y\right)}{2x^2y+5xy^2+3y^3}\)\(=\)\(\frac{5x\left(2x-3y\right)^2.y\left(2x^2+5xy+3y^2\right)}{3y\left(4x^2-9y^2\right).2x\left(x+y\right).\left(2x-3y\right)}\)
\(=\)\(\frac{10xy\left(2x-3y\right)^2.\left(2x^2+2xy+3xy+3y^2\right)}{6xy\left(2x-3y\right).\left(2x+3y\right)\left(x+y\right)\left(2x-3y\right)}\)\(=\)\(\frac{10xy\left(2x-3y\right)^2\left(x+y\right).\left(2x+3y\right)}{6xy\left(2x-3y\right)^2.\left(2x+3y\right).\left(x+y\right)}\)
\(=\)\(\frac{5}{3}\)
ĐK \(\hept{\begin{cases}xy\ne0\\2x-3y\ne0,2x+3y\ne0\\x\ne-y\end{cases}}\)
\(=\frac{5x\left(2x-3y\right)^2}{3y\left(2x+3y\right)\left(2x-3y\right)}:\frac{2x\left(x+y\right)\left(2x-3y\right)}{xy\left(2x+3y\right)+y^2\left(2x+3y\right)}\)
\(=\frac{5x\left(2x-3y\right)}{3y\left(2x+3y\right)}:\frac{2x\left(x+y\right)\left(2x-3y\right)}{\left(2x+3y\right)\left(xy+y^2\right)}\)
\(=\frac{5x\left(2x-3y\right)}{3y\left(2x+3y\right)}.\frac{y\left(x+y\right)\left(2x+3y\right)}{2x\left(x+y\right)\left(2x-3y\right)}=\frac{5}{6}\)
Vậy giá trị của biểu thức không phụ thuộc vào biến
Chưng minh biểu thức có giá trị không phụ thuộc vào giá trị của biến số:
\(\left(3x-5\right).\left(2x+11\right)-\left(2x+3\right).\left(3x+7\right)\)
Chứng minh biểu thức sau không phụ thuộc vào giá trị của biến:
A=\(^{x^2}-4x-x\left(x-4\right)-15\)
B=\(5x\left(x^2-x\right)-x^2\left(5x-5\right)-13\)
C=\(-3x\left(x-5\right)+3\left(x^2-4x\right)-3x+7\)
D=\(7\left(x^2-5x+3\right)-x\left(7x-35\right)-14\)
E=\(4x\left(x^2-7+2\right)-4\left(x^3-7x+2x-5\right)\)
H=\(x\left(5x-3\right)-x^2\left(x-1\right)+x\left(x^2-6x\right)-10+3x\)
\(A=x^2-4x-x\left(x-4\right)-15\)
\(=x^2-4x-x^2+4x-15=-15\) => đpcm
\(B=5x\left(x^2-x\right)-x^2\left(5x-5\right)-13\)
\(=5x^3-5x^2-5x^3+5x^2-13=-13\) => đpcm
\(C=-3x\left(x-5\right)+3\left(x^2-4x\right)-3x+7\)
\(=-3x^2+15x+3x^2-12x-3x+7=7\) => đpcm
\(D=7\left(x^2-5x+3\right)-x\left(7x-35\right)-14\)
\(=7x^2-35x+21-7x^2+35x-14=7\) => đpcm
\(E=4x\left(x^2-7+2\right)-4\left(x^3-7x+2x-5\right)\)
\(=4x^3-20x-4x^3+20x+20=20\) => đpcm
\(H=x\left(5x-3\right)-x^2\left(x-1\right)+x\left(x^2-6x\right)-10+3x\)
\(=5x^2-3x-x^3+x^2+x^3-6x^2-10x+3x=-10\) => đpcm