Cho tam giác ABC có \(\widehat{A}\) < 120 độ. Dựng ngoài tam giác ấy các tam giác đều ABD và ACE.
a) Cmr: BE=CD
b) Gọi I là giao điểm của BE và CD. Tính góc BIC
c) Cmr: IA+IB=ID
d) Cmr: \(\widehat{AIB}=\widehat{BIC}=\widehat{AIC}\) = 120 độ
Cho tam giác ABC có \(\widehat{A}< 120\) độ. Dựng ra phía ngoài tam giác ABC các tam giác đều ABD và ACE. Gọi I là giao điểm của BE và CD .
a, C/minh: BE = CD
b, Tính góc BIC
c, C/minh: IA + IB = ID
d, C/minh: \(\widehat{AIB}=\widehat{BIC}=\widehat{CIA}=120\) độ
Cho tam giác ABC có góc A nhỏ hơn 120 độ. Dựng ra ngoài tam giác đó các tam giác đều ABD và ACE. Gọi I là giao điểm của BE và CD. Cm:
a) BE = CD
b) Tính \(\widehat{BIC}\)
c) IA + IB = ID
d) \(\widehat{AIB}=\widehat{BIC}=\widehat{AIC}=120^0\)
Cho tam giác ABC , góc A <120 độ..Dựng ra ngoài tam giác ấy các tam giác đều ABD và ACE.
a,CMR: BE=CD
b,BE cắt CD tại I..Tính góc BIC
c,CMR:IA+IB=ID
d,CMR: góc AIB=góc BIC=góc AIC=120 độ
a) Có \(\Delta\) CEA và \(\Delta\) BDA đều (gt)
\(\Rightarrow\) góc CAE = góc CEA = góc ACE = góc BAD =góc BDA = góc ABD = 60 độ( t/c \(\Delta\)đều)\(\Rightarrow\)BA=AD=BD ; CA=CE=AE (đn \(\Delta\)đều)Có góc BAC +góc CAE = góc BAE, góc BAC + góc BAD =DAC ; mà góc CAE = góc BAD (CMT)
\(\Rightarrow\)góc BAE = góc DAC
xét \(\Delta\)BAE và \(\Delta\)DAC có:
BA=DA(cmt) ; góc BAE = góc DAC(cmt); AC =AE(cmt)
\(\Rightarrow\)\(\Delta\) BAE =\(\Delta\)DAC (c.g.c) \(\Rightarrow\)BE=CD ( 2 cạnh tương ứng )
b) Có \(\Delta\)BAE = \(\Delta\)DAC(cmt) \(\Rightarrow\)góc ICA = góc IEA (2 góc tương ứng)
Có góc ACE = góc ICE \(-\) góc ICA ; góc AEC = góc IEC \(+\) góc IEA
\(\Rightarrow\)góc ACE + góc AEC = góc ICE - góc ICA + góc IEC + góc IEA ; mà góc ICA = góc IEA(cmt)
\(\Rightarrow\)góc ICE + góc IEC = góc ACE + góc AEC = 60 độ +60 độ = 120 độ
xét \(\Delta\)ICE có: góc BIC là góc ngoài \(\Delta\) ICE
\(\Rightarrow\)góc BIC = góc ICE +góc IEC ; mà góc ICE +góc IEC = 120 độ (cmt)
\(\Rightarrow\)góc BIC = 120 độ
Cho tam giác ABC , góc A <120 độ..Dựng ra ngoài tam giác ấy các tam giác đều ABD và ACE.
a,CMR: BE=CD
b,BE cắt CD tại I..Tính góc BIC
c,CMR:IA+IB=ID
d,CMR: góc AIB=góc BIC=góc AIC=120 độ
Mình chỉ cần ý c,d thôi nhé! Cảm ơn trước! <3
làm như bạn ấy đúng đấy very good
Cho tam giác ABC, \(\widehat{A}< 120^o\). Vẽ ra ngoài tam giác ấy các tam giác đều ABD và ACE. Gọi I là giao điểm của BE và CD.
a) Tính \(\widehat{BIC}\)
b) Chứng minh ID = IA + IB
c) Chứng minh \(\widehat{AIB}=\widehat{BIC}=\widehat{AIC=}120^o\)
Cho tam giác ABC ,góc A <120 độ, vẽ về phía ngoài tam giác ấy các tam giác đều ABD và ACE
a, CM: BE=CD
b, Gọi I là giao điểm của BE và CD. tính góc BIC
c,CM: IA +IB =ID
d,CM:góc AIB=BIC=CIA
làm giúp mk nha,huhu,mai đi hok rùi
cho tam giác ABC có góc A nhỏ hơn 120 độ dựng phía ngoài tam giác ABC là các tam giác đều ABD và ACE a) chứng minh BE=CD b) tính góc BIC c) chứng minh IA+IB=ID
cho tam giác ABC có góc A<120 độ . Dựng ngoài tam giác ấy tam giác đều ABD và ACE . Gọi M là giao điểm của BE và CD
a,CMR góc BMC =120 độ