Tìm các cặp số nguyên x, y thỏa mãn \(x^3+2x^2+3x+2=y^3\)
Tìm các cặp số nguyên (x,y) thỏa mãn: \(x^3-2x^2+3x=y^3+1\)
Phương trình cho \(\Leftrightarrow x^3-2x^2+3x-y^3-1=0\)(1)
\(\Leftrightarrow y^3=x^3-2x^2+3x-1\)(2)
Ta có: \(\left(x-1\right)^3=x^3-3x^2+3x-1\le x^3-2x^2+3x-1=y^3\)(Do \(3x^2\ge2x^2\ge0\))
Lại có: \(\left(x+1\right)^3=x^3+3x^2+3x+1=\left(x^3-2x^2+3x-1\right)+5x^2+2>y^3\)
Do đó: \(\left(x-1\right)^3\le y^3< \left(x+1\right)^3\Rightarrow x-1\le y< x+1\)
Mà y thuộc Z nên \(\orbr{\begin{cases}y=x\\y=x-1\end{cases}}\)
+) Với y=x, thay vào (1) ta được: \(-2x^2+3x-1=0\Leftrightarrow2x^2-3x+1=0\)
\(\Leftrightarrow2x^2-2x-x+1=0\Leftrightarrow2x\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{2}\left(l\right)\end{cases}}\)\(\Rightarrow x=y=1\)
+) Với y = x-1; thay vào (2), ta được:
\(x^3-2x^2+3x-1=\left(x-1\right)^3\Leftrightarrow x^2=0\Rightarrow x=0\)\(\Rightarrow y=-1\)
Vậy các cặp nghiệm nguyên t/m pt cho là \(\left(x;y\right)\in\left\{\left(1;1\right);\left(0;-1\right)\right\}.\)
Tìm các cặp số nguyên (x;y) thỏa mãn: y^2=3-2|2x+3|
Ta có \(y^2=3-2\left|2x+3\right|\ge0\Leftrightarrow0\le\left|2x+3\right|\le\dfrac{3}{2}\)
Mà \(x,y\in Z\Leftrightarrow\left|2x+3\right|\in\left\{0;1\right\}\)
Với \(\left|2x+3\right|=0\Leftrightarrow x=-\dfrac{3}{2}\left(loại\right)\)
Với \(\left|2x+3\right|=1\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\end{matrix}\right.\Leftrightarrow y^2=1\Leftrightarrow\left[{}\begin{matrix}y=1\\y=-1\end{matrix}\right.\)
Vậy PT có nghiệm \(\left(x;y\right)\) là \(\left(-1;1\right);\left(-1;-1\right);\left(-2;1\right);\left(-2;-1\right)\)
Tìm các số nguyên \(x,y\) thỏa mãn: \(x^3+2x^2+3x+2=y^3\)
Đáp án:
Giải thích các bước giải:
Ta có:
Nhận xét:
Mà
Nên:
Giả sử:
(luôn đúng)
Vậy điều giả sử đúng hay
Mà:
Nên:
Mà là lập phương của số nguyên, giữa và chỉ có duy nhất lập phương của số nguyên là
Nên:
thì
<=> y=2`
thì
Vậy
\(x^3+2x^2+3x+2=y^3\left(1\right)\)
- Nếu \(x=0\Leftrightarrow y^3=2\) không tồn tại y nguyên
- Nếu \(x\ne0\Rightarrow x^2\ge1\Rightarrow x^2-1\ge0\)
\(\left(1\right)\Leftrightarrow y^3=x^3+2x^2+3x+2\)
\(\Leftrightarrow y^3=x^3+3x^2+3x+1-\left(x^2-1\right)\)
\(\Leftrightarrow y^3=\left(x+1\right)^3-\left(x^2-1\right)\le\left(x+1\right)^3\left(2\right)\)
Ta lại có
\(y^3=x^3+2x^2+3x+2=x^3+\left[2\left(x^2+\dfrac{3}{2}x+\dfrac{9}{16}\right)+2-\dfrac{9}{8}\right]\)
\(\Rightarrow y^3=x^3+\left[2\left(x+\dfrac{3}{4}\right)^2+\dfrac{7}{8}\right]\)
mà \(\left[2\left(x+\dfrac{3}{4}\right)^2+\dfrac{7}{8}\right]>0\)
\(\Rightarrow y^3< x^3\left(3\right)\)
\(\left(2\right),\left(3\right)\Rightarrow x^3< y^3\le\left(x+1\right)^3\)
\(\Rightarrow y^3=\left(x+1\right)^3\)
\(\left(2\right)\Rightarrow x^2-1=0\)
\(\Rightarrow x^2=1\)
\(\Rightarrow x=1;x=-1\)
Nếu \(x=-1\Rightarrow y=0\)
Nếu \(x=1\Rightarrow y=2\)
Vậy \(\left(x;y\right)\in\left\{\left(-1;0\right);\left(1;2\right)\right\}\) thỏa mãn đề bài
Tìm các cặp số nguyên (x;y) thỏa mãn: y^2=3-2|2x+3|
NHANH Lên , Tui cần gấp !!!!
Tìm các cặp số nguyên (x;y) thỏa mãn ; y^2=3-2|2x+3|
Tìm các cặp số nguyên (x;y) thỏa mãn ; y^2=3-2|2x+3|
Tìm các cặp số nguyên (x;y) thỏa mãn : \(x^2y+xy-2x^2-3x+4=0\)
tìm các số nguyên x y thỏa mãn x^3+2x^2+3x+2=y^3
Tìm tất cả các cặp số nguyên (x,y) thỏa mãn : x^3-x^2y+2x-y=2
x^3-x^2.y+2x-y=2
=>x^2(x-y)+(x-y)+(x-2)=0
=>(x^2+1)(x-y)+(x-2)=0
Có x^2+1 >=0 với mọi x
để PT trên bằng 0 thì x-y=0 <=>x=y
Và x-2=0 <=> x=2
Vậy x=y=2 thì Pt đã cho bằng 0
Sợ không đúng thôi
Tìm các cặp số (x;y) thỏa mãn phương trình:
\(x^3+2x^2+3x+2=y^3\)
ta có \(y^3-x^3=2x^2+3x+2=2\left(x+\frac{3}{4}\right)^2+\frac{7}{8}>0\Rightarrow y>x\)
\(\left(x+2\right)^3-y^3=4x^2+9x+6=\left(2x+\frac{9}{4}\right)^2+\frac{15}{16}>0\Rightarrow y< x+2\)
Vậy x<y<x+2 mà x,y thuộc Z => y=x+1
thay y=x+1 vào phương trình ta được:
\(x^3+2x^2+3x+2=\left(x+1\right)^3\)
\(\Leftrightarrow x^3+2x^2+3x+2=x^3+3x^3+3x+1\Leftrightarrow x^2=1\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
với x=1 thì y=x+1=2
với x=-1 thì y=x+1=0
Vậy phương trình đã cho có 2 nghiệm (x;y)=(1;2);(-1;0)
Bài này không có điều kiện x, y nhưng ít nhất là x, y là số nguyên nhé!
+) Ta thấy x = 0 không có y nguyên thỏa mãn
+)\(\left(x+1\right)^3=x^3+3x^2+3x+1\ge x^3+2x^2+3x+2>x^3\)
Mà \(x^3+2x^2+3x+2\)là lập phương của số tự nhiên nên ta có: \(x^3+2x^2+3x+2=x^3+3x^2+3x+1\)
Từ đây tìm được x=1, y=2