cmr: các số sau là 2 số nguyên tố cùng nhau ?
a)7n+10 va 5n +7
b) 2n+3 va 4n+8
Chứng minh rằng : với n thuộc N THÌ các số sau là hai số nguyên tố cùng nhau
a) n+1 va 2n+3
b) 2n+3 va 4n+8
c) 7n+10 va 5n +7
d) 14n+3 và 21n +4
a) Gọi 2 số tự nhiên lẻ liên tiếp là 2k+1 và 2k+3
Gọi ước chung lớn nhất của 2k+1 và 2k+3 là d
=> 2k+1 chia hết cho d; 2k+3 chia hết cho d
=> (2k+1 - 2k-3) chia hết cho d
=> -2 chia hết cho d
=> d thuộc Ư(-2) => d thuộc {-2; -1; 1; 2}
mà d lớn nhất; số tự nhiên lẻ không chia hết cho 2 => d = 1
=> 2 số tự nhiên lẻ liên tiếp là 2 số nguyên tố cùng nhau
b) Gọi ƯCLN(2n+5;3n+7) là d
=> 2n+5 chia hết cho d => 3(2n+5) chia hết cho d => 6n+15 chia hết cho d
3n+7 chia hết cho d => 2(3n+7) chia hết cho d => 6n+14 chia hết cho d
=> (6n+15-6n-14) chia hết cho d
=> 1 chia hết cho d
=> d thuộc Ư(1)
mà d lớn nhất => d = 1
=> 2n+5 và 3n+7 là 2 số nguyên tố cùng nhau
CMR: với n là mọi số tự nhiên thì các số sau là 2 số nguyên tố cùng nhau:
a,7n+10 và 5n+7
b.2n+3 và 4n+8
Gọi d là ƯC ( 7n + 10 ; 5n + 7 )
=> 7n + 10 ⋮ d => 5.( 7n + 10 ) ⋮ d => 35n + 50 ⋮ d
=> 5n + 7 ⋮ d => 7.( 5n + 7 ) ⋮ d => 35n + 49 ⋮ d
=> [ ( 35n + 50 ) - ( 35n + 49 ) ] ⋮ d
=> 1 ⋮ d => d = 1
Vì ƯC ( 7n + 10 ; 5n + 7 ) = 1 nên 7n + 10 và 5n + 7 là nguyên tố cùng nhau
Câu b làm tương tự
CMR với mọi số tự nhiên n, các số sau là hai số nguyên tố cùng nhau.
a) 7n+10 và 5n+7
b) 2n+3 và 4n+8
b)Gọi UCLN(2n+3;4n+8) là d
Ta có:2n+3 chia hết cho d
4n+8 chia hết cho d
=>2(2n+3) chia hết cho d
1(4n+8)chia hết cho d
=>4n+6 chia hết cho d
4n+8 chia hết cho d
4n+8 -(4n+6) chia hết cho d
2 chia hết cho d
=>d thuộc {1;2} mà 2n+3 không chia hết cho 2
=>d=1
Vậy 2n+3 và 4n+8 là 2 số nguyên tố cùng nhau.
Tick câu thứ 2 nha!Nếu không hiểu bạn nhắn tin hỏi mình nhé!
chứng minh rằng các số sau nguyên tố cùng nhau
7n+10 và 5n+7
2n+3 và 4n+8
2n+2 và 5n+3
Gọi d > 0 là ước số chung của 7n+10 và 5n+7
=> d là ước số của 5.(7n+10) = 35n +50
và d là ước số của 7(5n+7)= 35n +49
mà (35n + 50) -(35n +49) =1
=> d là ước số của 1 => d = 1
Vậy _________________
Gọi d > 0 là ước số chung của 2n+3 và 4n + 8
=> d là ước số của 2(2n + 3) = 4n + 6
(4n + 8) - (4n + 6) = 2
=> d là ước số của 2 => d=1,2
d = 2 không là ước số của số lẻ 2n+3 => d = 1
Vậy __________________
Câu a : Giả sử : ƯCLN ( 7n + 10 ; 5n + 7 ) = 1
=> 7n + 10 chia hết cho d => ( 7n + 10 ) . 5 chia hết cho d
=> 5n + 7 chia hết cho d => ( 5n + 7 ) . 7 chia hết cho d
=> 35n + 50 chia hết cho d => ( 35n + 50 ) - ( 35 + 49 ) = 1 chia hét cho d
35 + 49 chia hết cho d => ( 35n + 49 ) - ( 35 + 50 ) = 1 chia hết cho d
Vì 1 chia hết cho d và d thuộc N nên Ư( 1 ) = { 1 } . Vì 1 chia hết cho d và d thuộc N
=> ƯCLN ( 7n + 13 ; 2n + 14 ) = 1
Vậy : 7n + 10 và 5n + 7 là 2 số nguyên tố cùng nhau
Câu b : Giả sử : ƯCLN ( 2n +3 ; 4n + 8 ) = 1
=> 2n + 3 chia hết cho d => ( 2n + 3 ) chia hết cho d
4n + 8 chia hết cho d => ( 4n + 8 ) . 2 chia hết cho d
=> 2n + 3 chia hết cho d => ( 2n + 4 ) - ( 2n +3 ) = 1 chia hết cho d
=> 2n + 4 chia hết cho d => ( 2 + 3 ) - ( 2n + 4 ) = 1 chia hết cho d
Vì 1 chia hết cho d và d thuộc N nên Ư( 1 ) = { 1 } . Vì 1 chia hết cho d và d thuộc N
=> ƯCLN ( 2n + 3 ; 4n + 8 ) = 1
Vậy 2n + 3 và 4n + 8 là 2 số nguyên tố cùng nhau
Chứng minh với mọi số n, các số sau là nguyên tố cùng nhau
a, 7n+10 và 5n+7
b, 2n+3 và 4n+8
Chứng minh răng với mọi số tự nhiên n, các số sau là 2 số nguyên tố cùng nhau:
a) 7n+10 và 5n+7
b) 2n+3 và 4n+8
a. Gọi d là ƯC của 7n+10 và 5n+7 ta có:
7n+10 chia hết cho d suy ra 35n+50 chia hết cho d
5n+7 chia hết cho d suy ra 35n+49 chia hết d
suy ra (35n+50)-(35n+49) chia hết d
suy ra 1 chia hết d
suy ra d=1
suy ra 7n+10 và 5n+7 nguyên tố cùng nhau
b tương tự như a
ƯC(2n+3,4n+8)=d
2n+3 chia hết d
4n+8 chia hết d suy ra 2n+4 chia hết d
suy ra (2n+4)-(2n+3) chia hết d
suy ra 1 chia hết d
suy ra d=1
suy ra 2n+3 và 4n+8 nguyên tố cùng nhau
a) 7n+10 và 5n+7
Gọi d là ƯCLN ( 7n+10,5n+7)
=> 7n+10 chia hết cho d
5n+7 chia hết cho d
=> 5(7n+10) chia hết cho d
7(5n+7) chia hết cho d
=> 5(7n+10) - 7(5n+7) chia hết cho d
=> 35n + 50 - 35n+49 chia hết cho d
=>1 chia hết cho d
=> d=1
Vậy 7n+10 và 5n+7 nguyên tố cùng nhau.
Mik mới giải ra câu a) không biết có đúng không.
Các bạn giải câu b) cho mik nhé ^_^
2n + 3 va 4n + 8 la so nguyen to cung nhau.
Chứng tỏ các số sau là hai số nguyên tố băng nhau (với n là số tự nhiên)
a. 7n + 10 và 5n + 7
b. 2n + 3 và 4n + 8
c. 9n + 24 và 3n + 4
d. 18n + 3 và 21n + 7
Chứng tỏ các số sau là hai số nguyên tố băng nhau (với n là số tự nhiên)
a. 7n + 10 và 5n + 7
b. 2n + 3 và 4n + 8
c. 9n + 24 và 3n + 4
d. 18n + 3 và 21n + 7
b: Vì 2n+3 là số lẻ
mà 4n+8 là số chẵn
nên 2n+3 và 4n+8 là hai số nguyên tố cùng nhau
Chứng minh rằng với mọi số tự nhiên n thì các số sau nguyên tố cùng nhau:
a, 2n+3 và 4n+8
b, 2n+5 và 3n+7
c, 7n+10 và 5n+7
a, Đặt d = ƯCLN(2n+3;4n+8)
=> 2(2n+3) ⋮ d; (4n+8) ⋮ d
=> [(4n+8) – (4n+6)] ⋮ d
=> 2 ⋮ d => d ⋮ {1;2}
Mặt khác 2n+3 là số lẻ nên d ≠ 2.
Vậy d = 1. Hay với mọi số tự nhiên n thì các số 2n+3 và 4n+8 nguyên tố cùng nhau
b, Đặt d = ƯCLN(2n+5;3n+7)
=> 3(2n+5) ⋮ d; 2(3n+7) ⋮ d
=> [(6n+15) – (6n+14)] ⋮ d
=> 1 ⋮ d => d = 1
Vậy d = 1. Hay với mọi số tự nhiên n thì các số 2n+5 và 3n+7 nguyên tố cùng nhau.
c, Đặt d = ƯCLN(7n+10;5n+7)
=> 5(7n+10) ⋮ d; 7(5n+7) ⋮ d
=> [(35n+50) – (35n+49)] ⋮ d
=> 1 ⋮ d => d = 1
Vậy d = 1. Hay với mọi số tự nhiên n thì các số 7n+10 và 5n+7 nguyên tố cùng nhau