Tìm x,y,z biết: (x+y)/z = (y+z)/x =(x+z)/y và x+y+z = 45
Tìm x,y,z biết:
x/2 = y/3 ; x/4=z/5 và x+y+z =45
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{4}=\frac{y}{6}\)
\(\frac{x}{4}=\frac{z}{5}\)
\(\Rightarrow\frac{x}{4}=\frac{y}{6}=\frac{z}{5}\)
\(\Rightarrow\frac{x+y+z}{4+5+6}=\frac{x}{4}=\frac{y}{6}=\frac{z}{5}\) mà x + y + z = 45
\(\Rightarrow\frac{45}{15}=\frac{x}{4}=\frac{y}{6}=\frac{z}{5}\)
\(\Rightarrow3=\frac{x}{4}=\frac{y}{6}=\frac{z}{5}\)
\(\Rightarrow\hept{\begin{cases}x=3\cdot4=12\\y=3\cdot6=18\\z=3\cdot5=15\end{cases}}\)
Tìm x, y, z, biết
a. x/3 = y/9 = z/5 và x.y.z = 45
b. x/6 = y/8 = z/6 và x + y + z = 24
\(a,\text{Ta có: }\frac{x}{3}=\frac{y}{9}=\frac{z}{5}=\frac{xyz}{3.9.5}=\frac{45}{45}=1\left(\text{T/c dãy tỉ số bằng nhau}\right).\)
\(\Rightarrow\frac{x}{3}=1\text{ Vậy }x=3\)
\(\Rightarrow\frac{y}{9}=1\text{ Vậy }y=9\)
\(\Rightarrow\frac{z}{5}=1\text{ Vậy }z=5\)
\(b,\text{Ta có: }\frac{x}{6}=\frac{y}{8}=\frac{z}{6}=\frac{x+y+z}{6+8+6}=\frac{24}{20}=\frac{6}{5}\left(\text{T/c dãy tỉ số bằng nhau}\right)\)
\(\Rightarrow\frac{x}{6}=\frac{6}{5}\text{ Vậy }x=\frac{36}{5}\)
\(\Rightarrow\frac{y}{8}=\frac{6}{5}\text{ Vậy }y=\frac{48}{5}\)
\(\Rightarrow\frac{z}{6}=\frac{6}{5}\text{ Vậy }z=\frac{36}{5}\)
Sr lúc nãy lm hơi vội ý a)
lm lại nha!!
Ta có: x/3=y/9=z/5=xyz/3.9.5=45/135=1/3 (T/c dãy tỉ số bằng nhau)
=>x/3=1/3, vậy x= 1
=>y/9=1/3, vậy y=3
=>z/5=1/3, vậy z= 5/3
Tìm x, y, z biết x/2 = y/-5 = z/3 và 2x - y - z = -45
\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{-5}=\frac{z}{3}\\2x-y-z=-45\end{cases}}\Rightarrow\hept{\begin{cases}\frac{2x}{4}=\frac{y}{-5}=\frac{z}{3}\\2x-y-z=-45\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{4}=\frac{y}{-5}=\frac{z}{3}=\frac{2x-y-z}{4-\left(-5\right)-3}=-\frac{45}{6}=-\frac{15}{2}\)
\(x=-\frac{15}{2}\cdot2=-15\)
\(y=-\frac{15}{2}\cdot\left(-5\right)=\frac{75}{2}\)
\(z=-\frac{15}{2}\cdot3=-\frac{45}{2}\)
Bài 1 : Tìm x ,y,z biết:
a, 3/x-1 = 4/y-2 = 5/z-3 và x+y+z = 18
b, 3/x-1 = 4/y-2 = 5/z-3 và x.y.z = 192
Bài 2 : Tìm x,y,z biết : x^3+y^3/6 = x^3-2y^3/4 và x^6.y^6 = 64
Bài 3 : Tìm x,y,z biết :x+4/6 = 3y-1/8 = 3y-x-5/x
Bài 4 :Tìm x,y,z biết : x+y+2005/z = y+z-2006 = z+x+1/y = 2/x+y+z
bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 => x-1/3=y-2/4=z-3/5
áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1
do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương tự
Bài 1:
a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )
Tìm x,y,z biết:
Tìm x,y,z biết:
a) 7x-2y=5x-3y và 2x+3y=20
b) 2x=3y=4z-2y và x+y+z=45
c) 3x=4y-2x=7z-4y và x+y-2z=10
a.
$7x-2y=5x-3y$
$\Leftrightarrow 2x=-y$. Thay vào điều kiện số 2 ta có:
$-y+3y=20$
$2y=20$
$\Rightarrow y=10$.
$x=\frac{-y}{2}=\frac{-10}{2}=-5$
b.
$2x=3y\Rightarrow \frac{x}{3}=\frac{y}{2}$
$3y=4z-2y\Rightarrow 5y=4z\Rightarrow \frac{y}{4}=\frac{z}{5}$
$\Rightarrow \frac{x}{6}=\frac{y}{4}=\frac{z}{5}$
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{6}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{6+4+5}=\frac{45}{15}=3$
$\Rightarrow x=6.3=18; y=4.3=12; z=5.3=15$
c.
$3x=4y-2x$
$\Rightarrow 5x=4y\Rightarrow x=\frac{4}{5}y$
$3x=7z-4y$
$\Leftrightarrow \frac{12}{5}y=7z-4y$
$\Leftrightarrow \frac{32}{5}y=7z\Rightarrow z=\frac{32}{35}y$
Khi đó:
$x+y-2z=10$
$\frac{4}{5}y+y-2.\frac{32}{35}y=10$
$y.\frac{-1}{35}=10$
$y=-350$
$x=\frac{4}{5}y=\frac{4}{5}.(-350)=-280$
$z=\frac{32}{35}y=\frac{32}{35}.(-350)=-320$
tìm x,y,z biết:
a, x/2=y/3 và y/5=z/7 và x+y+z=92
b, x/y+z+1=y/x+z+1=z/x+y-2=x+y+z
a) \(\frac{x}{2}=\frac{y}{3}\)và \(\frac{y}{5}=\frac{z}{7}\)và \(x+y+z=92\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chất dãy tỉ số = nhau
ta có
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{92}{46}=2\)
Suy ra \(\frac{x}{10}=2\Rightarrow x=2.10=20\)
\(\frac{y}{15}=2\Rightarrow y=2.15=30\)
\(\frac{z}{21}=2\Rightarrow z=2.21=42\)
Vậy \(x=20;y=30;z=42\)
tìm x,y,z biết x+y+z khác 0 và x phần y+z-3= y phần x+z= z phần x+y+3= 1 phần 4044 x+y+z
\(\dfrac{x}{y+z-3}=\dfrac{y}{x+z}=\dfrac{z}{x+y+3}=\dfrac{x+y+z}{2\left(x+y+z\right)}=\dfrac{1}{2}=\dfrac{1}{4044\left(x+y+z\right)}\)
\(\Rightarrow\left\{{}\begin{matrix}y+z-3=2x\\x+z=2y\\x+y+3=2z\end{matrix}\right.\) và \(4044\left(x+y+z\right)=2\)
\(\Rightarrow\left\{{}\begin{matrix}x+y+z=3x+3\\x+y+z=3y\\x+y+z=3z-3\end{matrix}\right.\\ \Rightarrow3x+3=3y=3z-3\\ \Rightarrow x+1=y=z-1\)
\(\left\{{}\begin{matrix}x=y-1\\z=y+1\end{matrix}\right.\)
Lại có \(4044\left(x+y+z\right)=2\)
\(\Rightarrow4044\left(y-1+y+y+1\right)=2\\ \Rightarrow4044\cdot3y=2\\ \Rightarrow y=\dfrac{1}{674}\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{673}{674}\\z=\dfrac{675}{674}\end{matrix}\right.\)
tìm x,y,z biết (x+y)(x+z)=15;(y+z)(y+x)=18 và (z+x)(z+y)=30
tìm x,y,z biết/x/+/y/+/z/
/x/+/y/+/z/=0
/x+45-40/+/y+10-11/<0
/x/+/y/=0
\(\left|x\right|+\left|y\right|+\left|z\right|=0\)
Ta có \(\left|x\right|\ge0\forall x;\left|y\right|\ge0\forall y;\left|z\right|\ge0\forall z\)
\(\Rightarrow\left|x\right|+\left|y\right|+\left|z\right|\ge0\forall x,y,z\)
\(\Rightarrow\left|x\right|+\left|y\right|+\left|z\right|\ge0\)
\(\Rightarrow\left|x\right|+\left|y\right|+\left|z\right|=0\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\y=0\\z=0\end{cases}}\)
\(\left|x\right|+\left|y\right|=0\)
Ta có \(\left|x\right|\ge0\forall x;\left|y\right|\ge0\forall y\)
\(\Rightarrow\left|x\right|+\left|y\right|\ge0\forall x;y\)
\(\Rightarrow\left|x\right|+\left|y\right|=0\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}\)