Cho A,B,C >0 chứng minh rằng M= A/A+B + B/B+C +C/C+A không là số nguyên.
a) Cho a, b, c > 0. Chứng minh rằng M = \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\) không là số nguyên
b) Cho a, b, c thỏa mãn: a + b + c = 0. Chứng minh rằng ab + bc + ca nhỏ hơn hoặc bằng 0
Câu 2.
a) Cho a, b, c> 0. Chứng tỏ rằng M= (a/a+b) + ( b/b+c) + (c/c+a) không là số nguyên
b) Cho a,b,c thỏa mãn a+b+c = 0. Chứng minh rằng ab + bc + ca < hoặc bằng 0
Cho a,b,c>0 Chứng minh rằng
M=(a/a+b) + (b/b+c) + (c/c+a) Không phải là số nguyên
Dễ ý
Nếu a,b,c > 0
--- Chắc chắn là (a/a+b) + (b/b+c) + (c/c+a) khác 0 và khong phải là số nguyên rồi
Cho a, b, c là các số nguyên dương. Chứng minh rằng: M=a/a+b + b/b+c + c/c+a không là số nguyên
ta cần chứng minh nó lớn hơn 1 và nhỏ hơn 2
Do a;b;c và d là các số nguyên dương =>
a + b + c < a + b + c + d
a + b + d < a + b + c + d
a + c + d < a + b + c + d
b + c + d < a + b + c + d
=> a/(a + b + c) > a/(a + b + c + d) (1)
b/(a + b + d) > b/(a + b + c + d) (2)
c/(b + c + d) > c/(a + b + c + d) (3)
d/(a + c + d) > d/(a + b + c + d) (4)
Từ (1);(2);(3) và (4)
=> a/(a + b + c) + b/(a + b + d) + c/(b + c + d) + d/(a + c + d) > a/(a + b + c + d) + b/(a + b + c + d) + c/(a + b + c + d) + d/(a + b + c + d)
=> a/(a + b + c) + b/(a + b + d) + c/(b + c + d) + d/(a + c + d) > (a + b + c + d)/(a + b + c + d)
=> a/(a + b + c) + b/(a + b + d) + c/(b + c + d) + d/(a + c + d) > 1
=> B > 1 (*)
Ta có: (a + b + c)(a + d) - a(a + b + c + d)
= a² + ad + ab + bd + ac + cd - (a² + ab + ac + ad)
= a² + ad + ab + bd + ac + cd - a² - ab - ac - ad
= bd + cd
Do a;b;c và d là số nguyên dương
=> bd + cd > 0
=> (a + b + c)(a + d) - a(a + b + c + d) > 0
=> (a + b + c)(a + d) > a(a + b + c + d)
=> (a + d)/(a + b + c + d) > a/(a + b + c) (5)
Chứng minh tương tự ta được:
(b + c)/(a + b + c + d) > b/(a + b + d) (6)
(a + c)/(a + b + c + d) > c/(b + c + d) (7)
(b + d)/(a + b + c + d) > d/(a + c + d) (8)
Cộng vế với vế của (5);(6);(7) và (8) ta được:
(a + d)/(a + b + c + d) + (b + c)/(a + b + c + d) + (a + c)/(a + b + c + d) + (b + d)/(a + b + c + d) > a/(a + b + c) + b/(a + b + d) + c/(b + c + d) + d/(a + c + d)
=> (a + d + b + c + a + c + b + d)/(a + b + c + d) > B
=> 2(a + b + c + d)/(a + b + c + d) > B
=> 2 > B (*)(*)
Từ (*) và (*)(*)
=> 1 < B < 2
=> B không phải là số nguyên
Ta có: a/a+b <a/a+b+c (1)
b/b+c <b/a+b+c (2)
c/c+a <c/a+b+c (3)
Từ (1),(2),(3) => a/a+b + b/b+c + c/c+a > a/a+b+c + b/a+b+c + c/a+b+c
= a+b+c/a+b+c
=1
VẬY : M>1
Ta có :
a/a+b < a+c/a+b+c (1)
b/b+c < b+a/a+b+c (2)
c/c+a < c+b/a+b+c (3)
Từ (1),(2),(3) => a/a+b + b/b+c + c/c+a < a+c/a+b+c + b+a/a+b+c + c+a/a+b+c
= 2.(a+b+c)/a+b+c
= 2
=> 1<M<2
=> M không phải là số nguyên
Bài 1
a) Cho ba số a, b, c dương . Chứng tỏ rằng M = a/a+b + b/b+c + c/a+c không là số nguyên
b) Cho tỉ lệ thức a/b =c/d ( b,d khác 0 ; a khác -c ; b khác -d ) . Chứng minh: (a+b/c+d)^2 = a^2+b^2/c^2+d^2
c) Cho 1/c = 1/2(1/a+1/b) (Với a, b, c khác 0; b khác c). Chứng minh rằng: a/b=a-c/c-b
cho M=a/a+b+b/b+c+c/c+a với a, b,c là các số nguyên dương bất kì . Chứng minh rằng M không thể là số nguyên
M=a/a+b+b/b+c+c/c+a vs a,b,c lớn hơn 0
M=1+b+1+c+1+a=3+a,b,c
M là số nguyên
Ta có a/b+c+b/a+c+c/a+b > a/a+b+c+b/b+c+a+c/b+c+a=a+b+c/a+b+c=1
=>M>1
Lại có M=(1-b/a+b)+(1- c/b+c)+(1-c/a+c)<3-(b/a+b+c+c/b+c+a+a/c+a+b)=3-1=2
=>M < 2
do đo 1<M<2=>đpcm
Bn vào đây:http://olm.vn/hoi-dap/question/431454.html
Cho a, b, c > 0. Chứng minh rằng : \(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)không là số nguyên
Cho a, b, c > 0 . Chứng minh rằng \(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)Không là số nguyên
Cho a, b, c > 0. Chứng minh rằng \(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)không là số nguyên
Cho a, b, c > 0. Chứng minh rằng: \(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)không là số nguyên
\(\frac{a}{a+b}>\frac{a}{a+b+c}\)
\(\frac{b}{b+c}>\frac{b}{a+b+c}\)
\(\frac{c}{c+a}>\frac{c}{a+b+c}\)
Cộng theo vế 2 bất đẳng thức trên ta có:
M >\(\frac{a+b+c}{a+b+c}\)
=>M>1 (1)
Aps dụng t/c (a;b>1) =>\(\frac{a}{b}