tìm tất cả các số nguyê a , biết : (6a + 1) ⋮ ( 3a -1)
tìm tất cả các số nguyên a biết : (6a+1)chia hết (3a -1)
6a+1 chia hết 3a-1
3a-1 chia hết 3a-1
=> 2(3a-1) chia hết 3a-1
6a-2 chia hết 3a-1
=>[(6a+1)-(6a-2)] chia hết 3a-1
=> [6a+1-6a+2] chia hết 3a-1
=> 3 chia hết 3a-1
=> 3a-1 thuộc {-1;-3;1;3}
=> a =0
Vậy a = 0
6a+1 chia het cho 3a-1
=>2(3a-1)+3 chia het cho 3a-1
MÀ 2(3a-1) chia het cho 3a-1
=>3 chia het cho 3a-1
=>3a-1 E Ư(3)={-3;-1;1;3}
=>3a E {-2;0;2;4}
=>a E {-2/3;0;2/3;4/3}
Mà a E Z=>a=0
tìm tất cả các số nguyên a biết (6a+1) chia hết(3a-1)
6a+1 chia hết cho 3a-1
=>6a-6+7 chia hết cho 3a-1
=>7 chia hét cho 3a-1
=>3a-1 thuộc Ư(7)={-1;1;-7;7}
=>3a thuộc{0;2;-6;8}
loại trường hợp 3a thuộc{2;8} vì 2 và 8 k chia hết cho 3
=>3a thuộc{0;6}
=>a thuộc {0;-2}
6a +1 chia hết cho 3a-1<=> 6a - 2 +3 chia hết cho 3a-1 <=> 2( 3a-1) +3 chia hết cho 3a-1 <=> 3 chia hết cho 3a-1
<=> 3a-1 thuộc Ư(3)= { -1;1;-3;3}
<=> 3a-1 = -1 <=> a= 0 ; 3a-1=1<=> a= 2/3( loại)
3a-1= 3<=> a=4/3( loại); 3a-1=-3<=> a= -2/3( loại)
Vậy a=0
tìm tất cả các số nguyên a biết ;(6a+1) chia het (3a-1)
\(a\in\left(\frac{-2}{3};0;\frac{2}{3};\frac{4}{3}\right)\)
Tìm tất cả các số nguyên a biết:6a + 1 chia hết cho 3a - 1
ta có : 6a + 1 chia hết cho 3a - 1
hay 6a - 2 + 3 chia hết cho 3a - 1
2( 3a -1) + 3 chia hết cho 3a - 1
vì 3a - 1 chia hết cho 3a - 1 suy ra 2(3a-1) chia hết cho 3a -1
suy ra 3 chia hết cho 3a-1 suy ra 3a-1 thuộc Ư(3) ={ 1;3;-1;-3 }
3a thuộc { 2; 4;0;-2}
vì a thuộc Z suy ra 3a chỉ có thể bằng 0 suy ra a = 0:3 = 0
Tìm tất cả các số nguyên a biết :6a +1 chia hết cho 3a-1
6a+1 chia hết 3a-1
=> 2(3a-1)+3 chia hết cho 3a-1
=> 3 chia hết cho 3a-1
=> 3a-1 là Ư(3)={1;-1;3;-3}
Vì 3a-1 chia 3 dư 2 hoặc -1
=> 3a-1=-1
=> a=0
Theo đề ra ta có :
\(6a+1⋮3a-1\)
\(\Rightarrow6a-2+3⋮3a-1\)
\(\Rightarrow2\left(3a-1\right)+3⋮3a-1\)
Mà : \(2\left(3a-1\right)⋮3a-1\)suy ra : \(3⋮3a-1\)
\(\Rightarrow3a-1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
\(\Rightarrow3a\in\left\{-2;0;2;4\right\}\)
\(\Rightarrow a\in\left\{-\frac{2}{3};0;\frac{2}{3};\frac{4}{3}\right\}\)
Do : \(a\inℤ\)nên : \(a=0\)
6a+1=6a-2+3chia hết cho 3a-1
suy ra 3a-1 thuộc ước của 3={-1;-3;3;1}
ta có bảng
3a-1 | -1 | -3 | 1 | 3 |
3a | 0 | -2 | 2 | 4 |
a | 0 | -2/3 | 2/3 | 4/3 |
(t/m) loại loại loại
vậy a=0
Tìm tất cả các số nguyên a biết: ( 6a + 1 ) chia hết cho ( 3a - 1 )
6a + 1 chia hết cho 3a - 1
=> 6a - 2 + 3 chia hết cho 3a - 1
=> 2.(3a - 1) + 3 chia hết cho 3a - 1
mà 2.(3a - 1) chia hết cho 3a - 1
=> 3 chia hết cho 3a - 1
=> 3a - 1 \(\in\) Ư ( 3) = {-3; -1; 1; 3}
=> 3a \(\in\) {-2; 0; 2; 4}
Mà a là số nguyên
=> a = 0.
Tìm tất cả các số nguyên a biết: (6a+1)chia hết cho (3a-1)
6a + 1 chia hết cho 3a - 1
6a - 2 + 2 + 1 chia hết cho 3a - 1
2.(3a - 1) + 3 chia hết cho 3a - 1
=> 3 chia hết cho 3a - 1
=> 3a - 1 thuộc Ư(3) = {1 ; -1 ; 3 ; -3}
Ta có bảng sau :
3a - 1 | 1 | -1 | 3 | -3 |
a | 2/3 | 0 | 4/3 | -2/3 |
Tìm tất cả các số tự nhiên a biết: ( 6a + 1 ) chia hết cho ( 3a - 1 )
6a + 1 chia hết cho 3a - 1
=> 6a - 2 + 3 chia hết cho 3a - 1
=> 2.(3a - 1) + 3 chia hết cho 3a - 1
Mà 2.(3a - 1) chia hết cho 3a - 1
=> 3 chia hết cho 3a - 1
=> 3a - 1 \(\in\)Ư(3) = {-3; -1; 1; 3}
+) 3a - 1 = -3
=> 3a = -2
=> a = -2/3 (loại)
+) 3a - 1 = -1
=> 3a = 0
=> a = 0
+) 3a - 1 = 1
=> 3a = 2
=> a = 2/3 (loại)
+) 3a - 1 = 3
=> 3a = 4
=> a = 4/3 (loại)
Vậy a = 0.
tìm tất cả các số tự nhiên a biết : ( 6a+1) chia hết cho ( 3a-1)
6a + 1 \(⋮\)3a - 1
(6a - 2 ) + 3 \(⋮\)3a - 1
2.(3a - 1 ) + 3 \(⋮\)3a - 1
Vì 3a -1 \(⋮\)3a - 1
nên 2. (3a - 1) \(⋮\)3a - 1
\(\Rightarrow\)3 \(⋮\)3a - 1
\(\Rightarrow\)3a - 1 \(\in\)Ư(3)
\(\Rightarrow\)3a - 1 \(\in\){ 1 ; 3 }
\(\Rightarrow\)3a \(\in\){ 2 ; 4 }
\(\Rightarrow\)a \(\in\){ \(\frac{2}{3}\); \(\frac{4}{3}\)}
Mà a \(\in\)\(ℕ\)
nên không có giá trị a tự nhiên nào thỏa mãn đề bài.
Vậy hông có giá trị a tự nhiên nào thỏa mãn đề bài.
~ HOK TỐT ~
Tìm tất cả các số ngyên a biết
( 6a + 1) chia hết (3a -1)
6a + 1 chia hết cho 3a - 1
6a - 2 + 3 chia hết cho 3a - 1
2.(3a - 1) + 3 chia hết cho 3a - 1
=> 3 chia hết cho 3a - 1
=> 3a -1 thuộc Ư(3) = {1 ; -1 ; 3; -3}
Ta có bảng sau :
3a - 1 | 1 | -1 | 3 | -3 |
a | 2/3 | 0 | 4/3 | -2/3 |
\(6a+1⋮3a-1\)
\(\Rightarrow6a-2+3⋮3a-1\)
\(\Rightarrow2\left(3a-1\right)+3⋮3a-1\)
Vì 2(3a - 1) \(⋮\) 3a - 1 nên 3 \(⋮\) 3a - 1
=> 3a - 1 \(\in\)Ư(3)
=> 3a - 1 \(\in\){1;-1;3;-3}
Ta có bảng:
3a - 1 | 1 | -1 | 3 | -3 |
3a | 2 | 0 | 4 | -2 |
a | 2/3 (loại) | 0 | 4/3 (loại) | -2/3 (loại) |
Vậy a \(\in\){0}
\(\left(6a+1\right)⋮\left(3a-1\right)\)
\(\Rightarrow\hept{\begin{cases}\left(6a+1\right)⋮\left(3a-1\right)\\\left(6a-2\right)⋮\left(3a-1\right)\end{cases}}\)
\(\Rightarrow\left[6a+1-\left(6a-2\right)\right]⋮\left(3a-1\right)\)
\(\left(6a+1-6a+2\right)⋮\left(3a-1\right)\)
\(3\) \(⋮\left(3a-1\right)\)
\(\Rightarrow3a-1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
Ta có bảng sau :
\(3a-1\) | 1 | -1 | 3 | -3 |
\(a\) | \(\frac{2}{3}\)(loại) | 0 | \(\frac{4}{3}\)(loại) | \(-\frac{2}{3}\)(loại) |
Vậy \(a=0\)