Giải bất phương trình \(\frac{x^2+x+1}{x^2+2}>\frac{x^2+x}{x^2+1}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
1 giải phương trình và bất phương trình sau
\(\frac{X+2}{X-2}=\frac{2}{X^2-2X}+\frac{1}{X}\)
\(\frac{X+1}{2}-X\le\frac{1}{2}\)
Bài làm:
PT:
đkxđ: \(x\ne0;x\ne2\)
Ta có: \(\frac{x+2}{x-2}=\frac{2}{x^2-2x}+\frac{1}{x}\)
\(\Leftrightarrow\frac{x\left(x+2\right)}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}+\frac{x-2}{x\left(x-2\right)}\)
\(\Rightarrow x^2+2x=2+x-2\)
\(\Leftrightarrow x^2+x=0\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\left(vl\right)\\x+1=0\end{cases}}\Rightarrow x=-1\)
BPT:
Ta có: \(\frac{x+1}{2}-x\le\frac{1}{2}\)
\(\Leftrightarrow\frac{x+1}{2}-x-\frac{1}{2}\le0\)
\(\Leftrightarrow\frac{x+1-2x-1}{2}\le0\)
\(\Leftrightarrow\frac{-x}{2}\le0\)
\(\Rightarrow-x\le0\)
\(\Rightarrow x\ge0\)
a) \(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne2\end{cases}}\)
\(\frac{x+2}{x-2}=\frac{2}{x^2-2x}+\frac{1}{x}\)
\(\Leftrightarrow\frac{2}{x\left(x-2\right)}+\frac{1}{x}-\frac{x+2}{x-2}=0\)
\(\Leftrightarrow\frac{2+x-2-x^2-2x}{x\left(x-2\right)}=0\)
\(\Leftrightarrow-x^2-x=0\)
\(\Leftrightarrow-x\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\left(ktm\right)\\x=-1\left(tm\right)\end{cases}}}\)
Vậy \(S=\left\{-1\right\}\)
b) \(\frac{x+1}{2}-x\le\frac{1}{2}\)
\(\Leftrightarrow x+1-2x-1\le0\)
\(\Leftrightarrow-x\le0\)
\(\Leftrightarrow x\ge0\)
Vậy \(x\ge0\)
ĐKXĐ : \(x\ne0;2\)
\(\frac{x+2}{x-2}=\frac{2}{x^2-2x}+\frac{1}{x}\)
\(\Leftrightarrow\frac{x\left(x+2\right)}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}+\frac{x-2}{x\left(x-2\right)}\)
\(\Leftrightarrow x^2+2x=2+x-2\)
\(\Leftrightarrow x^2+x=0\Leftrightarrow x\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\left(ktm\right)\\x=-1\left(tm\right)\end{cases}}\)
giải bất phương trình bậc nhất
\(\hept{\begin{cases}\frac{2}{x}>x-1\\\frac{x}{x+1}>4+x\\\frac{x+2}{1-x}< \frac{2-x}{x+1}\end{cases}}\)
Giải bất phương trình:
\(\frac{x+2}{\sqrt{2\left(x^4-x^2+1\right)-1}}\ge\frac{1}{x-1}\)
Giải bất phương trình sau:
\(\frac{x^2+2x+2}{x+1}>\frac{x^2+4x+5}{x+2}-1\)
Giải các phương trình và bất phương trình sau:
a, \(\frac{x-1}{2}+\frac{x-2}{3}+\frac{x-3}{4}=\frac{x-4}{5}+\frac{x-5}{6}\)
b, \(\frac{2x\left(x^2+1\right)-x^2-4}{3}+x\left(x^2-x+1\right)>\frac{5x^2+5}{3}\)
a) \(\frac{x-1}{2}+\frac{x-2}{3}+\frac{x-3}{4}=\frac{x-4}{5}+\frac{x-5}{6}\)
\(\left(\frac{x-1}{2}+1\right)+\left(\frac{x-2}{3}+3\right)+\left(\frac{x-3}{4}+1\right)=\left(\frac{x-4}{5}+1\right)+\left(\frac{x-5}{6}+1\right)\)
\(\frac{x-1}{2}+\frac{x-1}{3}+\frac{x-1}{4}=\frac{x-1}{5}+\frac{x-1}{6}\)
\(\left(x-1\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\right)\)=0
\(x-1=0\)
\(x=1\)
Giải các phương trình và bất phương trình sau:
a) \(\frac{x-2}{6}-\frac{x}{2}\le\frac{3}{10}+\frac{x+1}{3}\)
b) \(\frac{x+2}{x^2-5x+6}-\frac{3}{x-2}=\frac{5}{x-3}\)
Thanks!!
\(a,\Leftrightarrow5\left(x-2\right)-15x\le9+10\left(x+1\right)\)
\(\Leftrightarrow5x-10-15x\le9+10x+10\)
\(\Leftrightarrow-20x\le29\)
\(\Leftrightarrow x\ge-1,45\)
Vậy ...........
\(b,\Rightarrow\left(x+2\right)-3\left(x-3\right)=5\left(x-2\right)\)
\(\Leftrightarrow x+2-3x+9-5x+10=0\)
\(\Leftrightarrow-7x+21=0\)
\(\Leftrightarrow x=3\)
Vậy ..............
\(\frac{x-2}{6}-\frac{x}{2}\le\frac{3}{10}+\frac{x+1}{3}\Leftrightarrow\frac{5\left(x-2\right)}{30}-\frac{15x}{30}\le\frac{9}{30}+\frac{10\left(x+1\right)}{30}\)
\(\Leftrightarrow5x-10-15x-9-10x-10\le0\)
\(\Leftrightarrow-20x-29\le0\Leftrightarrow\left(-20x\right)\cdot\frac{-1}{20}\ge29\cdot-\frac{1}{20}\)
\(\Leftrightarrow x\ge-\frac{29}{20}\)
ĐKXĐ : \(\hept{\begin{cases}x\ne2\\x\ne3\end{cases}}\)
\(\frac{x+2}{x^2-5x+6}-\frac{3}{x-2}=\frac{5}{x-3}\)
\(\Rightarrow\frac{x+2}{x-2x-3x+6}-\frac{3}{x-2}=\frac{5}{x-3}\)
\(\Rightarrow\frac{x+2}{\left(x-2\right)\left(x-3\right)}-\frac{3}{x-2}=\frac{5}{x-3}\)
\(\Rightarrow\frac{x+2}{\left(x-2\right)\left(x-3\right)}-\frac{3\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}=\frac{5\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\)
\(\Rightarrow x+2-3x+9-5x+10=0\)
\(\Leftrightarrow-7x+21=0\Leftrightarrow x=3\) (nhân)
tập nghiệm của phương trình là S= 3
Tiếp nè: Giải bất phương trình \(\frac{x^2+x+1}{x^2+2}>\frac{x^2+x}{x^2+1}\)
\(\Leftrightarrow\frac{\left(x^2+x+1\right)\left(x^2+1\right)-\left(x^2+1\right)\left(x^2+x\right)-x^2-x}{\left(x^2+1\right)\left(x^2+2\right)}>0\Leftrightarrow\frac{\left(x^2+1\right)\left(x^2+x+1-x^2-x\right)-x^2-x}{\left(x^2+1\right)\left(x^2+2\right)}>0\)
\(\Leftrightarrow\frac{1-x}{\left(x^2+1\right)\left(x^2+2\right)}>0\Leftrightarrow1-x>0\Leftrightarrow x
Giải bất phương trình :
\(\frac{x-1}{2}+\frac{x-2}{3}+\frac{x-3}{4}>\frac{x-4}{5}+\frac{x-5}{6}\)
Theo đề bài ta có: \(\frac{x-1}{2}+\frac{x-2}{3}+\frac{x-3}{4}-\frac{x-4}{5}-\frac{x-5}{6}>0\)
=> \(\frac{x-1}{2}+1+\frac{x-2}{3}+1+\frac{x-3}{4}+1-\left(\frac{x-4}{5}+1\right)-\left(\frac{x-5}{6}+1\right)>1\)
<=> \(\frac{x+1}{2}+\frac{x+1}{3}+\frac{x+1}{4}-\frac{x+1}{5}-\frac{x+1}{6}>1\)
<=>\(\left(x+1\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)>1\)
<=> \(\left(x+1\right)\cdot\frac{43}{60}>1\)
<=>\(x+1>\frac{60}{43}\)
<=> x>\(\frac{17}{43}\)
Vậy x>17/43
Giải các bất phương trình sau:
a) \(\sqrt{2-|x-2|}>x-2\)
b) \(x^2+3x+2\geq 2\sqrt{x^2+3x+5}\)
c) \(4\sqrt{x}+\frac{2}{\sqrt{x}}<2x+\frac{1}{2x}+2\)