Tìm a,b là các số nguyên dương sao cho a + b2 chia hết cho a2b - 1.
a) tìm số nguyên dương a sao cho a2017+a2015+1 là số nguyên tố
b) với a,b là các số nguyên dương sao cho a+1 và b+2013 chia hết cho 6 . C/m an+a+b chia hết cho 6
a; Đặt A= \(a^{2017}+a^{2015}+1\)
\(=a^4\left(a^{2013}-1\right)+a^2\left(a^{2013}-1\right)+a^4+a^2+1\)=\(a^4\left(\left(a^3\right)^{671}-1\right)+a^2\left(\left(a^3\right)^{671}-1\right)+\left(a^2+a+1\right)\left(a^2-a+1\right)\)
= \(\left(a^2+a+1\right)F\left(a\right)\) (trong đó F(a) là đa thức chứa a)
\(\Rightarrow A\) chia hết cho \(a^2+a+1\)
do \(a^2+a+1\) > 1 (dễ cm đc)
mà A là số nguyên tố
\(\Rightarrow A=a^2+a+1\)
hay \(a^{2017}+a^{2015}+1=a^2+a+1\)
\(\Leftrightarrow a\left(a\left(a^{2015}-1\right)+\left(a^{2014}-1\right)\right)=0\)
\(\Leftrightarrow a\left(a-1\right).G\left(a\right)=0\) ( bạn đặt nhân tử chung ra)
do a dương => a>0 => a-1=0=> a=1(t/m)
Kết Luận:...
chỗ nào bạn chưa hiểu cứ nói cho mình nha :3
b1:Xét cặp số nguyên dương (a,b) thỏa mãn điều kiện abba=72.Hỏi a+b nhận giá trị lớn nhất là bao nhiêu
b2:Hỏi có bao nhiêu cặp số nguyên dương (x,y)sao cho 1/x+1/y=1/2020
b3:tìm số nguyên dương N nhỏ nhất ,chia hết cho 99 và tất cả các chữ số của N đều chẵn
Mình không biết nha tạm thời bạn hỏi bạn khác đi 😅
Bài 1: Tìm các cặp số nguyên dương (a;b)(a;b) thỏa mãn a+b2⋮a2b−1
mk mới lớp 8 nên ko biết làm bài lớp 9
Tìm số nhỏ nhất trong các số nguyên dương là bội của 2007 và có 4 CS cuối là 2008 (1)
Xét a , b là các số nguyên dương sao cho a + 1 và b + 2007 chia hết cho 6 . CMR : ( 4n + a + b ) chia hết cho 6 (2)
cho a,b là các số nguyên dương
cmr ab(a2+2)(b2+2) luôn chia hết cho 9
Lời giải:
Sử dụng bổ đề: Một số chính phương $x^2$ khi chia 3 dư 0 hoặc 1.
Chứng minh:
Nêú $x$ chia hết cho $3$ thì $x^2\vdots 3$ (dư $0$)
Nếu $x$ không chia hết cho $3$. Khi đó $x=3k\pm 1$
$\Rightarrow x^2=(3k\pm 1)^2=9k^2\pm 6k+1$ chia $3$ dư $1$
Vậy ta có đpcm
-----------------------------
Áp dụng vào bài:
TH1: Nếu $a,b$ chia hết cho $3$ thì hiển nhiên $ab(a^2+2)(b^2+2)\vdots 9$
TH1: Nếu $a\vdots 3, b\not\vdots 3$
$\Rightarrow b^2$ chia $3$ dư $1$
$\Rightarrow b^2+3\vdots 3$
$\Rightarrow a(b^2+3)\vdots 9$
$\Rightarrow ab(a^2+3)(b^2+3)\vdots 9$
TH3: Nếu $a\not\vdots 3; b\vdots 3$
$\Rightarrow a^2$ chia $3$ dư $1$
$\Rightarrow a^2+2\vdots 3$
$\Rightarrow b(a^2+2)\vdots 9$
$\Rightarrow ab(a^2+2)(b^2+2)\vdots 9$
TH4: Nếu $a\not\vdots 3; b\not\vdots 3$
$\Rightarrow a^2, b^2$ chia $3$ dư $1$
$\Rightarrow a^2+2\vdots 3; b^2+2\vdots 3$
$\Rightarrow ab(a^2+2)(b^2+2)\vdots 9$
Từ các TH trên ta có đpcm.
cho a,b là các số nguyên dương thỏa mãn a2-ab+\(\dfrac{3}{2}\)b2 chia hết cho 25. Chứng minh rằng cả a và b đều chia hết cho 5.
Cho a và b là những số nguyên dương thỏa mãn ab + 1 chia hết cho a2 + b2 . Hãy chứng minh rằng: a2 + b2 / ab + 1 là bình phương của một số nguyên.
Để \(\frac{2a+2b}{ab+1}\) là bình phương của 1 số nguyên thì 2a + 2b chia hết cho ab + 1; mà ab + 1 chia hết cho 2a + 2b => ab + 1 = 2b + 2a
=> \(\frac{2a+2b}{ab+1}\)=1 = 12
Tìm a,b là các số nguyên dương sao cho a + b2 chia hết cho a2b-1
mình ché trên mạng
a. Ta xét a = 1
=> a + b^2 = b^2 + 1 = (b^2 - 1) + 2 chia hết cho (b - 1)
=> 2 chia hết cho (b - 1)
=> b = 2 hoặc b = 3
(a, b) = (1, 2), (1, 3) thỏa mãn
b. ta xét a = 2
=> a + b^2 = b^2 + 2 chia hết cho (4b - 1)
=> 4b^2 + 8 chia hết cho (4b - 1)
=> (4b^2 - b) + (b + 8) chia hết cho (4b - 1)
=> (b + 8) chia hết cho (4b - 1) *
Ta thấy * thỏa mãn khi b = 1 hoặc b = 3, với b > 3 ta có (4b - 1) > b + 8
nên b + 8 không chia hết cho (4b - 1)
Thử lại ta thấy (a, b) = (2, 1), (2, 3) thỏa mãn
c. Ta xét a > 2
không thể có b = 1 vì lúc đó ta có
a^2 - a - 2 = a(a - 1) - 2 > 2*(2 - 1) - 2 = 0
=> a + 1 < a^2 - 1
=> a + 1 không thể chia hết cho a^2 - 1
tiếp theo ta xét b >= 2
c.1. xét a > b
a*[a*(b - 1) - 1] >= a*[a*(2 - 1) - 1] = a*(a - 1) > 2*(2 - 1) = 2 > 1
=> a^2(b - 1) - a > 1
=> a^2b - 1 > a + a^2 > a + b^2
=> a + b^2 không thể chia hết cho a^2b - 1
c.2. xét a = b
a^3 - 1 = (a - 1)(a ^2 + a + 1) > (a ^2 + a + 1) > a + a^2
=> a + a^2 không chia hết cho a^3 - 1
c.3 xét a < b
"(a + b^2) chia hết cho (a^2b - 1)"
<=> "(a^3 + a^2*b^2) chia hết cho (a^2b - 1)"
<=> "(a^3 + b) + b*(a^2*b - 1) chia hết cho (a^2b - 1)"
<=> "(a^3 + b) chia hết cho (a^2b - 1)" **
Ta cm ** sai
(a + 1)(a^2 - 1) = (a + 1)(a^2 - a + a - 1) > (a + 1)(a^2 - a + 1) (do a - 1 > 1) = a^3 + 1
=> b >= (a + 1) > (a^3 + 1)/(a^2 - 1)
=> b(a^2 - 1) > a^3 + 1
=> a^2b - 1 > a^3 + b
vậy (a^3 + b) không thể chia hết cho (a^2b - 1) tức ** sai.
*mina*
1. Tìm những cặp số (x,y) thoả mãn pt:
a) x² - 4x +y - 6√(y) + 13 = 0
b) (xy²)² - 16xy³ + 68y² -4xy + x² = 0
c) x² - x²y - y + 8x + 7 = 0 ngiệm (x,y) nào đạt y max
2. Giả sử x1, x2 là nghiệm của pt: x² - 6x + 1 =0. CM với mọi số nguyên dương n thì S(n) = x1ⁿ +x2ⁿ là số nguyên và không chia hết cho 5
3. Cho f(x) là một đa thức tuỳ ý với các hệ số nguyên. CM: f(a) - f(b) chia hết (a - b) với mọi số nguyên a,b
4. Chứng minh tồn tại đa thức p(x) với hệ số nguyên thoả p(3) = 10, p(7) = 24
5. Giả sử x, y, z là những số tự nhiên thoả x² + y² = z². Chứng minh xyz chia hết cho 60
6. Cho x,y,z là các số nguyên thoả (x-y)(y-z)(z-x) = x + y + z. CM: x +y + z chia hết cho 27
7. Với 4 số nguyên a,b,c,d .CM:(a-b)(a-c)(a-d)(b-c)(b-d)(c-d) chia hết cho 12.
8. Chứng minh nếu a² + b² chia hết cho 21 thì cũng chia hết cho 441
9. Tìm tất cả số nguyên tố vừa là tổng của 2 số nguyên tố, vừa là hiệu của 2 số nguyên tố
10. Viết số 100 thành tổng các số nguyên tố khác nhau
11. Tìm các nghiệm nguyên dương x! + y! = (x + y)!
12. Tìm các số tự nhiên n sao cho 2ⁿ +3ⁿ = 35
13. Tìm 3 số nguyên dương sao cho tích của chúng gấp đôi tổng của chúng
14. Tìm 4 số nguyên dương sao cho tổng và tích của chúng bằng nhau (Tương tự với 3 số nguyên dương)
15. Tìm 3 số nguyên dương x,y,z sao cho xy + 1 chia hết cho z; xz +1 chia hết cho y; yz + 1 chia hết cho x
16. a) CM x² + y² = 7z²
b) CM số 7 ko viết được dưới dạng tổng bình phương của 2 số hửu tỉ