Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Tuấn Bách
Xem chi tiết
Hải Đậu Thị
17 tháng 12 2015 lúc 23:20

a; Đặt A= \(a^{2017}+a^{2015}+1\)

\(=a^4\left(a^{2013}-1\right)+a^2\left(a^{2013}-1\right)+a^4+a^2+1\)=\(a^4\left(\left(a^3\right)^{671}-1\right)+a^2\left(\left(a^3\right)^{671}-1\right)+\left(a^2+a+1\right)\left(a^2-a+1\right)\)

\(\left(a^2+a+1\right)F\left(a\right)\) (trong đó F(a) là đa thức chứa a)

\(\Rightarrow A\) chia hết cho \(a^2+a+1\)

do \(a^2+a+1\) > 1 (dễ cm đc)

mà A là số nguyên tố

\(\Rightarrow A=a^2+a+1\)

hay \(a^{2017}+a^{2015}+1=a^2+a+1\)

\(\Leftrightarrow a\left(a\left(a^{2015}-1\right)+\left(a^{2014}-1\right)\right)=0\)

\(\Leftrightarrow a\left(a-1\right).G\left(a\right)=0\) ( bạn đặt nhân tử chung ra)

do a dương => a>0 => a-1=0=> a=1(t/m)

Kết Luận:...

chỗ nào bạn chưa hiểu cứ nói cho mình nha :3

 

 

I lay my love on you
Xem chi tiết
Đỗ Bảo Châu
7 tháng 10 2021 lúc 19:50

Mình không biết nha tạm thời bạn hỏi bạn khác đi 😅

Khách vãng lai đã xóa
Trịnh Gia Long
Xem chi tiết
Yukino
26 tháng 11 2019 lúc 14:06

hỏi chấm

Khách vãng lai đã xóa
Yukino
26 tháng 11 2019 lúc 14:07

mk mới lớp 8 nên ko biết làm bài lớp 9

Khách vãng lai đã xóa
Mạnh Khôi
Xem chi tiết
Nguyễn Việt Bách
Xem chi tiết
Akai Haruma
31 tháng 8 2023 lúc 16:58

Lời giải:

Sử dụng bổ đề: Một số chính phương $x^2$ khi chia 3 dư 0 hoặc 1.

Chứng minh:

Nêú $x$ chia hết cho $3$ thì $x^2\vdots 3$ (dư $0$)

Nếu $x$ không chia hết cho $3$. Khi đó $x=3k\pm 1$ 

$\Rightarrow x^2=(3k\pm 1)^2=9k^2\pm 6k+1$ chia $3$ dư $1$

Vậy ta có đpcm

-----------------------------

Áp dụng vào bài:

TH1: Nếu $a,b$ chia hết cho $3$ thì hiển nhiên $ab(a^2+2)(b^2+2)\vdots 9$

TH1: Nếu $a\vdots 3, b\not\vdots 3$

$\Rightarrow b^2$ chia $3$ dư $1$

$\Rightarrow b^2+3\vdots 3$

$\Rightarrow a(b^2+3)\vdots 9$

$\Rightarrow ab(a^2+3)(b^2+3)\vdots 9$

TH3: Nếu $a\not\vdots 3; b\vdots 3$

$\Rightarrow a^2$ chia $3$ dư $1$

$\Rightarrow a^2+2\vdots 3$

$\Rightarrow b(a^2+2)\vdots 9$

$\Rightarrow ab(a^2+2)(b^2+2)\vdots 9$

TH4: Nếu $a\not\vdots 3; b\not\vdots 3$

$\Rightarrow a^2, b^2$ chia $3$ dư $1$

$\Rightarrow a^2+2\vdots 3; b^2+2\vdots 3$

$\Rightarrow ab(a^2+2)(b^2+2)\vdots 9$

Từ các TH trên ta có đpcm.

 

trần minh khôi
Xem chi tiết
Đỗ Tuệ Lâm
11 tháng 5 2022 lúc 4:42

BN THAM KHẢO:

undefined

 

Flash Dragon
Xem chi tiết
Đỗ Hoàng Nhi
12 tháng 7 2020 lúc 20:20

thx ban

Khách vãng lai đã xóa
Le Anh Thi
21 tháng 4 2021 lúc 16:38

Để \(\frac{2a+2b}{ab+1}\) là bình phương của 1 số nguyên thì 2a + 2b chia hết cho ab + 1; mà ab + 1 chia hết cho 2a + 2b => ab + 1 = 2b + 2a
=> \(\frac{2a+2b}{ab+1}\)=1 = 12

Khách vãng lai đã xóa
Phương Trình Hai Ẩn
Xem chi tiết
Tôi đã trở lại và tệ hại...
9 tháng 12 2015 lúc 19:49

mình ché trên mạng

 a. Ta xét a = 1 
=> a + b^2 = b^2 + 1 = (b^2 - 1) + 2 chia hết cho (b - 1) 
=> 2 chia hết cho (b - 1) 
=> b = 2 hoặc b = 3 

(a, b) = (1, 2), (1, 3) thỏa mãn 

b. ta xét a = 2 
=> a + b^2 = b^2 + 2 chia hết cho (4b - 1) 
=> 4b^2 + 8 chia hết cho (4b - 1) 
=> (4b^2 - b) + (b + 8) chia hết cho (4b - 1) 
=> (b + 8) chia hết cho (4b - 1) * 
Ta thấy * thỏa mãn khi b = 1 hoặc b = 3, với b > 3 ta có (4b - 1) > b + 8 
nên b + 8 không chia hết cho (4b - 1) 

Thử lại ta thấy (a, b) = (2, 1), (2, 3) thỏa mãn 

c. Ta xét a > 2 

không thể có b = 1 vì lúc đó ta có 
a^2 - a - 2 = a(a - 1) - 2 > 2*(2 - 1) - 2 = 0 
=> a + 1 < a^2 - 1 
=> a + 1 không thể chia hết cho a^2 - 1 

tiếp theo ta xét b >= 2 

c.1. xét a > b 
a*[a*(b - 1) - 1] >= a*[a*(2 - 1) - 1] = a*(a - 1) > 2*(2 - 1) = 2 > 1 
=> a^2(b - 1) - a > 1 
=> a^2b - 1 > a + a^2 > a + b^2 
=> a + b^2 không thể chia hết cho a^2b - 1 

c.2. xét a = b 
a^3 - 1 = (a - 1)(a ^2 + a + 1) > (a ^2 + a + 1) > a + a^2 
=> a + a^2 không chia hết cho a^3 - 1 

c.3 xét a < b 
"(a + b^2) chia hết cho (a^2b - 1)" 
<=> "(a^3 + a^2*b^2) chia hết cho (a^2b - 1)" 
<=> "(a^3 + b) + b*(a^2*b - 1) chia hết cho (a^2b - 1)" 
<=> "(a^3 + b) chia hết cho (a^2b - 1)" ** 
Ta cm ** sai 

(a + 1)(a^2 - 1) = (a + 1)(a^2 - a + a - 1) > (a + 1)(a^2 - a + 1) (do a - 1 > 1) = a^3 + 1 
=> b >= (a + 1) > (a^3 + 1)/(a^2 - 1) 
=> b(a^2 - 1) > a^3 + 1 
=> a^2b - 1 > a^3 + b 
vậy (a^3 + b) không thể chia hết cho (a^2b - 1) tức ** sai. 

*mina*

Thanh Hằng Đinh
11 tháng 1 2016 lúc 21:02

cách hay mà, sai đâu

Nhóc_Siêu Phàm
Xem chi tiết