tính : 1x3 +3x5 +5x7 +....+99x101
1x3+3x5+5x7+...+99x101
1x3+3x5+5x7+...+99x101
A=1x3x(5+1) + 3x5x(7-1) +5x7x(9-3) +...+ 99x101x(103-97)
6A=3+ 1x3x5 +3x5x7-1x3x5 + 5x7x9 -3x5x7 +....+99x101x103 - 97x99x101
6A=3+99x101x103=1019703
vậy = 1019703
nếu sai chỗ nào thì sửa hộ mk vs
1x3/3x5 + 2x4/5x7 + 3x5/7x9 + ............... +49x51/99x101
1x3/3x5 + 2x3/5x7 + 3x5/7x9 + ............... +49x51/99x101
tính nhanh các tổng sau
a, 2/1x3 + 2/3x5 + 2/5x7 + ... + 2/99x101
\(\dfrac{2}{1\times3}+\dfrac{2}{3\times5}+...+\dfrac{2}{99\times101}\\ =1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\\ =1-\dfrac{1}{101}\\ =\dfrac{100}{101}\)
tính tổng: 1/1x3+1/3x5+1/5x7+...+1/99x101
Tính : B = 2/1x3 + 2/3x5 + 2/5x7 + 2/7x9 + ..... + 2/99x101
\(B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\)
\(\Rightarrow B=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(\Rightarrow B=1-\frac{1}{101}=\frac{101}{101}-\frac{1}{101}=\frac{100}{101}\)
_Học tốt_
\(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+....+\frac{2}{99\times101}\)
\(=\frac{3-1}{1\times3}+\frac{5-3}{3\times5}+\frac{7-5}{5\times7}+....+\frac{101-99}{99\times101}\)
\(=\frac{3}{1\times3}-\frac{1}{1\times3}+\frac{5}{3\times5}-\frac{3}{3\times5}+....+\frac{101}{99\times101}-\frac{99}{99\times101}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}=\frac{100}{101}\)
tính
3/1x3 + 3/3x5 + 3/5x7 +............+3/99x101=..........................................
Đặt \(S=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{99.101}\)
\(\Rightarrow S=\frac{2}{2}.\left(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{99.100}\right)\)
\(\Rightarrow S=\frac{3}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{3}{99.101}\right)\)
\(\Rightarrow S=\frac{3}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(\Rightarrow S=\frac{3}{2}.\left(1-\frac{1}{101}\right)\)
\(\Rightarrow S=\frac{3}{2}.\frac{100}{101}\)
\(\Rightarrow S=\frac{150}{101}\)
tinh E=1x3+3x5+5x7+...+97x99+99x101