a) 1+(-2)+3+(-4)+.......+19+(-20)
4)cho a^1+a^2+a^3+...+a^19+a^20+a^21=10 va a^1+a^2=a^3+a^4=...=a^19+a^20=a^20+a^21=2. tim a^20
giúp mình bài này với nhé mọi người ơi
Tính nhanh
a) (1 ++ 3 + 6 + 10 + ... + 45 + 55) / (1 * 10 + 2 * 9 + 3 * 8 + ... + 8 * 3 + 9 * 2 + 10 * 1)
b) (1 * 20 + 2 * 19 + 3 * 18 + 4 * 17 + ... + 18 * 3 + 19 * 2 + 20 * 1) / [20 * (1 + 2 + 3 + 4 + .. . + 19 + 20) - (1 * 2 + 2 * 3 + 3 * 4 + ... + 19 * 20)]
A = 1/1*2 + 1/2*3 + 1/3*4 + ........ 1/18*19 + 1/19*20
\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+.....+\frac{1}{18\cdot19}+\frac{1}{19\cdot20}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\)
Sau khi lược bỏ,ta còn lại:
\(A=1-\frac{1}{20}=\frac{19}{20}\)
A = 1/(1*2)+1/(2*3)+1/(3*4)+...+1/(18*19)+1/(19*20)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{18.19}+\frac{1}{19.20}\)
\(\Rightarrow A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\)
\(\Rightarrow A=\frac{1}{1}-\frac{1}{20}\)
\(\Rightarrow A=\frac{19}{20}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{18.19}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{18}-\frac{1}{19}\)
\(=1-\frac{1}{19}=\frac{18}{19}\)
tính A=1+1/2(1+2)+1/3(1+2+3)+1/4(1+2+3+4)+....+1/20(1+2+...+19+20)
\(A=\dfrac{19+\dfrac{18}{2}+\dfrac{17}{3}+\dfrac{16}{4}+...+\dfrac{2}{18}+\dfrac{1}{19}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{19}+\dfrac{1}{20}}\)
\(A=\dfrac{19+\dfrac{18}{2}+\dfrac{17}{3}+\dfrac{16}{4}+...+\dfrac{1}{19}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}\)
Biến đổi tử số
\(19+\dfrac{18}{2}+\dfrac{17}{3}+\dfrac{16}{4}+...+\dfrac{1}{19}\)
= 1 + \(\left(1+\dfrac{18}{2}\right)+\left(1+\dfrac{17}{3}\right)+\left(1+\dfrac{16}{4}\right)+...+\left(1+\dfrac{1}{19}\right)\)
= \(\dfrac{20}{20}+\dfrac{20}{2}+\dfrac{20}{3}+...+\dfrac{1}{19}\)
= 20 x \(\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{19}+\dfrac{1}{20}\right)\)
Vậy \(A=\dfrac{19+\dfrac{18}{2}+\dfrac{17}{3}+\dfrac{16}{4}+...+\dfrac{1}{19}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}\)
= \(\dfrac{20\times\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{19}+\dfrac{1}{20}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}=20\)
Vậy A = 20
Tính : A = 1/1*2 + 1/2*3 + 1/3*4 + ........ 1/18*19 + 1/19*20
Trả lời : A = ..............
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{19.20}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}=1-\frac{1}{20}=\frac{19}{20}\)
=1/2[1/1*2 - 1/2*3 + 1/2*3 - 1/3*4 + 1/3*4 - 1/4*5 + ... + 1/18*19 - 1/19*20]
=1/2[1/2 - 1/19*20]
=1/2*189/380
=189/760
A=1*2+2*3+3*4+4*5+....+19*20
A = 1 * 2 + 2 * 3 + 3 * 4 + 4 * 5 + .... + 19 * 20
A = 2660
Nhớ click cho mik nha !!!!!!!!!!!!!!1
(1/2+1/3+1/4+......+1/20)+(2/3+2/4+.....+2/20)+.....+19/20
Bạn ơi, bài này là tính tổng hay chứng minh gì thế bạn ?
Bạn ơi hình như bạn ghi đề sai
Cái này chỉ cần bỏ ngoặc ghép cặp lại rồi tính là được mà, mỗi cặp = 1
bài này là làm j đấy??? Chứng minh hay tính tổng???