Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Tiến Bộ
Xem chi tiết
Nguyễn Tùng Chi
Xem chi tiết
Chirikatoji
Xem chi tiết
Nguyễn Thị Thanh Tâm
Xem chi tiết
Bao Nguyen Trong
Xem chi tiết
Nguyễn Minh Anh
Xem chi tiết
Khiêm Nguyễn Gia
Xem chi tiết
Nguyễn Như Ngọc
9 tháng 8 2023 lúc 12:41

Đáp án:

 

Giải thích các bước giải:

Ta có:

2�2+3�+2

=2(�2+32�+1)

=2(�2+2.�.34+916+716)

=2[(�+34)2+716]

=2(�+34)2+78

Nhận xét:

2(�+34)2≥0 

⇒2(�+34)2+78>0 

Mà �3+2�2+3�+2=�3

Nên: �3<�3

Giả sử: �3<(�+2)3

⇔�3+2�2+3�+2<�3+6�2+12�+8

⇔-4�2-9�-6<0

⇔-(4�2+9�+6)<0

⇔4�2+9�+6>0

⇔4(�2+94�+8164)+1516>0

⇔4(�2+2.�.98+8164)+1516>0

⇔4(�+98)2+1516>0 (luôn đúng)

Vậy điều giả sử đúng hay �3<(�+2)3

Mà: �3<�3

Nên: �3<�3<(�+2)3

Mà �3 là lập phương của 1 số nguyên, giữa �3 và (�+2)3 chỉ có duy nhất 1 lập phương của số nguyên là (�+1)3

Nên: �3=(�+1)3

⇔�3+2�2+3�+2=�3+3�2+3�+1

⇔-�2+1=0

⇔1-�2=0

⇔(1-�)(1+�)=0

 [1−�=01+�=0

 [�=1�=−1

+)�=1 thì �3=1+2+3+2=8

<=> y=2`

+)�=-1 thì �3=-1+2-3+2=0

⇔�=0

Vậy 

Nguyễn Đức Trí
9 tháng 8 2023 lúc 13:44

\(x^3+2x^2+3x+2=y^3\left(1\right)\)

- Nếu \(x=0\Leftrightarrow y^3=2\) không tồn tại y nguyên

- Nếu \(x\ne0\Rightarrow x^2\ge1\Rightarrow x^2-1\ge0\)

\(\left(1\right)\Leftrightarrow y^3=x^3+2x^2+3x+2\)

\(\Leftrightarrow y^3=x^3+3x^2+3x+1-\left(x^2-1\right)\)

\(\Leftrightarrow y^3=\left(x+1\right)^3-\left(x^2-1\right)\le\left(x+1\right)^3\left(2\right)\)

Ta lại có 

\(y^3=x^3+2x^2+3x+2=x^3+\left[2\left(x^2+\dfrac{3}{2}x+\dfrac{9}{16}\right)+2-\dfrac{9}{8}\right]\)

\(\Rightarrow y^3=x^3+\left[2\left(x+\dfrac{3}{4}\right)^2+\dfrac{7}{8}\right]\)

mà \(\left[2\left(x+\dfrac{3}{4}\right)^2+\dfrac{7}{8}\right]>0\)

\(\Rightarrow y^3< x^3\left(3\right)\)

\(\left(2\right),\left(3\right)\Rightarrow x^3< y^3\le\left(x+1\right)^3\)

\(\Rightarrow y^3=\left(x+1\right)^3\)

\(\left(2\right)\Rightarrow x^2-1=0\)

\(\Rightarrow x^2=1\)

\(\Rightarrow x=1;x=-1\)

Nếu \(x=-1\Rightarrow y=0\)

Nếu \(x=1\Rightarrow y=2\)

Vậy \(\left(x;y\right)\in\left\{\left(-1;0\right);\left(1;2\right)\right\}\) thỏa mãn đề bài

Võ Thùy Trang
Xem chi tiết
Cô gái lạnh lùng
Xem chi tiết
Tú Lê Anh
23 tháng 3 2018 lúc 21:14

1) Giả sử: \(9x+5=n\left(n+1\right)\left(n\in Z\right)\)

\(36x+20-4n^2+4n\)

\(\Rightarrow36x+21=4n^2+4n+1\)

\(\Rightarrow3\left(12x+7\right)=\left(2n+1\right)^2\)

\(\left(2n+1\right)^2\)là số chính phương nên sẽ chia hết cho 3 => (2n+1)chia hết cho 9

Lại có: 12x+7 ko chia hết cho 3 => 3(12x+7) ko chia hết cho 9

Chứng tỏ không tồn tại số nguyên x nào để 9x+5=n(n+1)

Tú Lê Anh
23 tháng 3 2018 lúc 21:22

2) Ta có: xy + 3x - y = 6 =>x(y+3) - y = 6 

=>x(y+3) - y - 3 = 3 =>x(y+3) - (y+3) = 3

=> (y+3)(x-1) =3

Vì x, y là các số nguyên nên y+3;x-1 là các số nguyên

Ta có bảng sau:

y+3-3 -1 13
y-6-4-20
x-1-1-331
x0-242
๖ۣۜmạnͥh2ͣkͫ5ツ
Xem chi tiết