1+2+3+...+20
Bài 7: Chứng tỏ rằng:
1/2^2 + 1/3^2 + 1/4^2 + ...1/100^2 < 3/4
Bài 8: So sánh A= 20^10 + 1 / 20^10 - 1 và B= 20^10 - 1 / 20^10 - 3.
8:
\(A=\dfrac{20^{10}-1+2}{20^{10}-1}=1+\dfrac{2}{20^{10}-1}\)
\(B=\dfrac{20^{10}-3+2}{20^{10}-3}=1+\dfrac{2}{20^{10}-3}\)
mà 20^10-1>20^10-3
nên A<B
(1+2+3+...+1000+1001+1002+...+9999+10000).(32.1.2.3.4.5.6.7.8.9.10.311).(1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1-20+20-20+20-20+20+40-40+40-40+40-20-100+10000).32.33.34.(1-1).1.1.1.1.1.1.1.1.1.1.1.1.(1-2+3-4+5-6+7-8+9-10-100) = ?
Ai làm được tớ tick cho.
(1/2+1/3+1/4+......+1/20)+(2/3+2/4+.....+2/20)+.....+19/20
Bạn ơi, bài này là tính tổng hay chứng minh gì thế bạn ?
Bạn ơi hình như bạn ghi đề sai
Cái này chỉ cần bỏ ngoặc ghép cặp lại rồi tính là được mà, mỗi cặp = 1
bài này là làm j đấy??? Chứng minh hay tính tổng???
Tính:
1+1/2(1+2)+1/3(1+2+3)+...+1/20(1+2+3+...+20)
\(1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+...+\dfrac{1}{20}\left(1+2+3+...+20\right)\)
\(=1+\dfrac{1}{2}\cdot\dfrac{2\cdot3}{2}+\dfrac{1}{3}\cdot\dfrac{3\cdot4}{2}+...+\dfrac{1}{20}\cdot\dfrac{20\cdot21}{2}\)
\(=1+\dfrac{3}{2}+\dfrac{4}{2}+...+\dfrac{21}{2}\)
\(=\dfrac{2+3+4+...+21}{2}=\dfrac{\left(21+2\right)+\left(3+20\right)+...+\left(10+13\right)+\left(11+12\right)}{2}\)
\(=\dfrac{23+23+...+23}{2}=\dfrac{23\cdot10}{2}=23\cdot5=115\)
Tính
A= 1/2 + 1/22 + 1/23 +...+ 1/220
B= 1/2 - 1/22 + 1/23 - 1/24 +...+ 1/219 - 1/220
C= 1/3 + 2/32 + 3/33 +...+ 20/320
D= 4/3 + 7/32 + 10/33 +...+ 61/320
tính B= 1+ 1/2(1+2) +1/3(1+2+3)+...+1/20(1+2+3+...+20)
\(1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+...+\dfrac{1}{20}\left(1+2+3+...+20\right)\)\(=1+\dfrac{1}{2}.2.3:2+\dfrac{1}{3}.3.4:2+...+\dfrac{1}{20}.20.21:2\)
\(=\dfrac{2}{2}+\dfrac{3}{2}+...+\dfrac{21}{2}\)
\(=\dfrac{2+3+...+21}{2}\)
\(=\dfrac{230}{2}\)
\(=115\)
1+1/2(1+2)+1/3(1+2+3)+1/4(1+2+3+4)+...+1/20(1+2+3+4+...+20)
1+ 1/2(1+2) +1/3(1+2+3)+1/4(1+2+3+4)+...+1/20(1+2+3+4+5+...+20)
`Answer:`
\(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{20}\left(1+2+3+...+20\right)\)
\(=1+\frac{1}{2}.3+...+\frac{1}{2}.210\)
\(=1+1,5+2+...+10,5\)
\(=\frac{\left(10,5+1\right)[\left(10,5-1\right):0,5+1]}{2}\)
\(=\frac{230}{2}\)
\(=115\)
tính A= 1+1/2*(1+2)+1/3*(1+2+3)+1/4*(1+2+3+4)+...+1/20*(1+2+3+...+20)
Tính A=1+1/2*[1+2]+1/3*[1+2+3]+1/4*[1+2+3+4]+.............+1/20*[1+2+3+....+20]