Cho hình 13 ( sgk/Toán 8 ) trong đó ABCD là hình bình hành.Chứng minh M đối xứng với N qua C
Cho hình vẽ, trong đó ABCD là hình bình hành. Chứng minh rằng điểm M đối xứng với điểm N qua điểm c
Tứ giác ABCD là hình bình hành:
⇒ AB // CD hay BM // CD
Xét tứ giác BMCD ta có:
BM // CD
BM = CD( = AB ) (gt)
Suy ra: Tứ giác BMCD là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau)
⇒ MC // BD và MC = BD (1)
+) Ta có AD // BC (gt) haỵ DN // BC
Xét tứ giác BCND ta có: DN // BC và DN = BC (vì cùng bằng AD)
Suy ra: Tứ giác BCND là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau)
⇒ CN // BD và CN = BD (2)
Từ (1) và (2) theo tiên đề Ơ- clit suy ra: M, C, N thẳng hàng và MC = CN( = BD).
Cho hình 13 trong đó ABCD là hình bình hành. Chứng minh rằng điểm M đối xứng với điểm N qua điểm C
cho hình bình hành ABCD. Gọi M đối xứng với D qua A, N đối xứng với D qua C . Chứng minh M đối xứng với N qua B
Bài 1: cho hình bình hành ABCD. lấy điểm E đối xứng với điểm D qua A, lấy điểm F đối xứng với điểm D qua C
a, c/m: AEBC là hình bình hành
b, c/m: ABFC là hình bình hành.từ đó suy ra góc BAC = góc EFD
c, chứng minh điểm E và điểm F đối xứng nhau qua điểm B
đ, hình bình hành ABCD có thêm điều kiện gì thì điểm E đối xứng với điểm F qua đường thẳng BD . vẽ hình minh hoa
Cho hình bình hành ABCD,tâm O,trên OD lấy điểm E.Kẻ CF song song với AE.
a Chứng minh AFCE là hình bình hành
b AF cắt BC tại M,CE cắt AD tại N.Chứng minh M,O,N thẳng hàng
c Lấy K đối xứng với C qua E.Xác định vị trí của E trên OD để AKDO là hình bình hành
d Lấy I đối xứng với A qua D,H đối xứng với A qua B.Hình bình hành abcd phải có thêm điều kiện gì để I và H đối xứng với nhau qua AC
Bài 1: Cho hình vẽ, trong đó ABCD là hình bình hành. Chứng minh rằng điểm M đối xứng với điểm N qua điểm c
Bài 2: Cho hình vẽ trong đó DE // AB, DF // AC.Chứng minh rằng điểm E đối xứng với điểm F qua điểm I.
Giúp mk vs, mai cô mk thu bài rồi!
Bài 1:
Tứ giác ABCD là hình bình hành:
⇒ AB // CD hay BM // CD
Xét tứ giác BMCD ta có:
BM // CD
BM = CD( = AB ) (gt)
Suy ra: Tứ giác BMCD là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau)
⇒ MC // BD và MC = BD (1)
+) Ta có AD // BC (gt) haỵ DN // BC
Xét tứ giác BCND ta có: DN // BC và DN = BC (vì cùng bằng AD)
Suy ra: Tứ giác BCND là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau)
⇒ CN // BD và CN = BD (2)
Từ (1) và (2) theo tiên đề Ơ- clit suy ra: M, C, N thẳng hàng và MC = CN( = BD).
Bài 2:
Ta có: DE //AB (gt) hay DE //AF
Và DF //AC (gt) hay DF //AE
Suy ra, tứ giác AEDF là hình bình hành.
Lại có, I là trung điểm của AD nên I cũng là trung điểm EF (tính chất hình bình hành)
Vậy E và F đối xứng qua tâm I.
Cho hình bên, trong đó ABCD là hình bình hành. Chứng minh H và K đối xứng với nhau qua điểm O
Xét hại tam giác vuông AHO và CKO, ta có:
∠ (AHO)= ∠ (CKO)= 90 0
OA = OC (tính chất hình bình hành)
∠ (AOH)= ∠ (COK)(đối đỉnh)
Suy ra: ∆ AHO = ∆ CKO (cạnh huyền, góc nhọn)
⇒ OH = OK
Vậy O là trung điểm của HK hay điểm H đối xứng với điểm K qua điểm O
cho tam giác ABC , các đường trung tuyến BN, CM gọi D là điểm đối xứng với B qua N , gọi E là điểm đối xứng C qua M
a) chứng minh các tứ giác ABCD, AEBC là hình bình hành
b) chứng minh E đối xứng với D qua A
a, Vì N là trung điểm BD và AC nên ABCD là hbh
Vì M là trung điểm CE và AB nên AEBC là hbh
b, Vì ABCD và AEBC là hbh nên \(\left\{{}\begin{matrix}AE//BC;AE=BC\\AD//BC;AD=BC\end{matrix}\right.\Rightarrow AE\equiv AD;AE=AD\)
Vậy E đx D qua A
Cho tam giác ABC cân tại A. Gọi M và N lần lượt là trung điểm của AC và BC.
a) Chứng minh tứ giác AMNB là hình bình hành.
b) Gọi D là điểm đối xứng với B qua M. Chứng minh tứ giác ABCD là hình bình hành.
c) Gọi E là điểm đối xứng với A qua N. Chứng minh tứ giác ABEC là hình bình hành.
a. tam giác ABC có AM=MC và BN=NC => MN là đg TB của ABC => MN//AB => AMNB là hình thang ( k thể là Hình bình hành được )
b. D là điểm đối xứng với B qua M =>BM=MD
Tứ giác ABCD có AM=MC và BM=MD => 2 đg chéo cắt nhau tại trung điểm của mỗi đường
=> ABCD là HBH
c. E đối xứng với A qua N => AN=NE
ABEC có BN=NC và AN=NE => ABEC là HBH ( CMTT như câu b )