Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ĐqDuy
Xem chi tiết
Carthrine Nguyễn Nguyễn
Xem chi tiết
Hoàng Phúc
19 tháng 6 2016 lúc 21:08

x-y+z=2 (1)

x+y-z=0 (2)

-x+y+z=4 (3)

Cộng vế theo vế của (1),(2) và (3) ta được:

x-y+z+x+y-z-x+y+z=6

=>x+y+z=6 (4)

Từ -x+y+z=4=>y+z=4+x

Trừ (4) cho (1),vế theo vế:

x+y+z-x+y-z=4

=>2y=4=>y=2

Trừ (4) cho (2),vế theo vế:

x+y+z-x-y+z=6

=>2z=6=>z=3

Mà y+z=4+x=>4+x=2+3=5=>x=1

Vậy x=1;y=2;z=3


 

Nguyễn Thị Anh
19 tháng 6 2016 lúc 20:01

giải hệ ta được : x=1

y=2

z=3

Đào Lê Hoàng
Xem chi tiết
Nguyễn Hoàng Minh
16 tháng 11 2021 lúc 21:50

\(\dfrac{x}{y+z-3}=\dfrac{y}{x+z}=\dfrac{z}{x+y+3}=\dfrac{x+y+z}{2\left(x+y+z\right)}=\dfrac{1}{2}=\dfrac{1}{4044\left(x+y+z\right)}\)

\(\Rightarrow\left\{{}\begin{matrix}y+z-3=2x\\x+z=2y\\x+y+3=2z\end{matrix}\right.\) và \(4044\left(x+y+z\right)=2\)

\(\Rightarrow\left\{{}\begin{matrix}x+y+z=3x+3\\x+y+z=3y\\x+y+z=3z-3\end{matrix}\right.\\ \Rightarrow3x+3=3y=3z-3\\ \Rightarrow x+1=y=z-1\)

\(\left\{{}\begin{matrix}x=y-1\\z=y+1\end{matrix}\right.\)

Lại có \(4044\left(x+y+z\right)=2\)

\(\Rightarrow4044\left(y-1+y+y+1\right)=2\\ \Rightarrow4044\cdot3y=2\\ \Rightarrow y=\dfrac{1}{674}\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{673}{674}\\z=\dfrac{675}{674}\end{matrix}\right.\)

luong thuy anh
Xem chi tiết
Đặng Tú Phương
3 tháng 2 2019 lúc 21:43

\(\left|x\right|+\left|y\right|+\left|z\right|=0\)

Ta có \(\left|x\right|\ge0\forall x;\left|y\right|\ge0\forall y;\left|z\right|\ge0\forall z\)

\(\Rightarrow\left|x\right|+\left|y\right|+\left|z\right|\ge0\forall x,y,z\)

\(\Rightarrow\left|x\right|+\left|y\right|+\left|z\right|\ge0\)

\(\Rightarrow\left|x\right|+\left|y\right|+\left|z\right|=0\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\y=0\\z=0\end{cases}}\)

\(\left|x\right|+\left|y\right|=0\)

Ta có \(\left|x\right|\ge0\forall x;\left|y\right|\ge0\forall y\)

\(\Rightarrow\left|x\right|+\left|y\right|\ge0\forall x;y\)

\(\Rightarrow\left|x\right|+\left|y\right|=0\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}\)

Phạm Huy Hoàng
Xem chi tiết
Quách Thị Thanh Huyền
Xem chi tiết
Đoàn Đức Hà
26 tháng 5 2021 lúc 21:27

\(\hept{\begin{cases}x\left(x+y+z\right)=-5\\y\left(x+y+z\right)=9\\z\left(x+y+z\right)=5\end{cases}}\)

Dễ thấy \(x,y,z\)và \(x+y+z\)đều khác \(0\).

Suy ra \(\hept{\begin{cases}\frac{x}{z}=-1\\\frac{y}{z}=\frac{9}{5}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-z\\y=\frac{9}{5}z\end{cases}}\)

Thế vào phương trình \(z\left(x+y+z\right)=5\)ta được: 

\(z\left(-z+\frac{9}{5}z+z\right)=5\Leftrightarrow\frac{9}{5}z^2=5\Leftrightarrow z=\pm\frac{5}{3}\).

Suy ra các nghiệm \(\left(-\frac{5}{3},3,\frac{5}{3}\right),\left(\frac{5}{3},-3,-\frac{5}{3}\right)\).

Thử lại đều thỏa mãn.

Khách vãng lai đã xóa
Nguyễn Thị Minh Ánh
Xem chi tiết
Trần Anh Đức
Xem chi tiết
Lê Anh Tú
3 tháng 3 2018 lúc 18:42

Dùng tính chất tỉ lệ thức:

x+y+z = 0

\(\frac{x}{\left(y+z+1\right)}=\frac{y}{\left(x+z+1\right)}=\frac{z}{\left(x+y-2\right)}=0\Rightarrow x=y=z=0\) 

Áp dụng tính chất tỉ lệ thức: 

\(x+y+z=\frac{x}{\left(y+z+1\right)}=\frac{y}{\left(x+z+1\right)}=\frac{z}{\left(x+y-2\right)}=\left(\frac{x+y+z}{2x+2y+2z}\right)=\frac{1}{2}\)

=> x+y+z = \(\frac{1}{2}\)

+) \(2x=y+z+1=\frac{1}{2}-x+1\Rightarrow x=\frac{1}{2}\)

+) \(2y=x+z+1=\frac{1}{2}-y+1\Rightarrow y=\frac{1}{2}\) 

+) \(z=\frac{1}{2}-\left(x+y\right)=\frac{1}{2}-1=\frac{-1}{2}\)

I don
3 tháng 3 2018 lúc 18:58

TA CÓ: \(\frac{x}{z+y+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=\frac{x+y+z}{z+y+1+x+z+1+x+y-2}=\frac{1.\left(x+y+z\right)}{\left(1+1-2\right)+2x+2y+2z}\)

\(=\frac{1.\left(x+y+z\right)}{0+2.\left(x+y+z\right)}=\frac{1.\left(x+y+z\right)}{2.\left(x+y+z\right)}=\frac{1}{2}\)

\(\Rightarrow x+y+z=\frac{1}{2}\)

\(\Rightarrow\frac{x}{z+y+1}=\frac{1}{2}\)\(\Rightarrow2x=z+y+1\)\(\Rightarrow3x=x+z+y+1\)\(\Rightarrow3x=\frac{1}{2}+1\Rightarrow3x=\frac{3}{2}\Rightarrow x=\frac{1}{2}\)

\(\frac{y}{x+z+1}=\frac{1}{2}\)\(\Rightarrow2y=x+z+1\Rightarrow3y=y+x+z+1\Rightarrow3y=\frac{1}{2}+1=\frac{3}{2}\Rightarrow y=\frac{1}{2}\)

\(\frac{z}{x+y-2}=\frac{1}{2}\)\(\Rightarrow2z=x+y-2\Rightarrow3z=x+y+z-2\Rightarrow3z=\frac{1}{2}-2=\frac{-3}{2}\Rightarrow z=\frac{-1}{2}\)

VẬY X= 1/2; Y= 1/2 ; Z= -1/2

CHÚC BN HỌC TỐT!!!!!!

Sera Masumi
Xem chi tiết
Nguyễn Quỳnh Chi
19 tháng 6 2016 lúc 19:59

Ta có:

x-y+z+(x+y-z)=2+0

x-y+z+x+y-z=2

2x=2

x=1

Ta có:

x+y-z+(-x+y+z)=0+4

x+y-z-x+y+z=4

2y=4

y=2

Lại có:

x+y-z=0

1+2-z=0

z=3

Vậy x=1, y=2, z=3

Dung Vu
Xem chi tiết
Lưu Đức Mạnh
4 tháng 3 2016 lúc 20:55

GTLN=\(y=\frac{8}{9^3}\)