Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bách Vũ
Xem chi tiết
Nguyễn Nhật Minh
5 tháng 12 2015 lúc 0:50

\(y=\sqrt{\left(1-x\right)^2+2^2}+\sqrt{\left(x+2\right)^2+1^2}\ge\sqrt{\left(1-x+x+2\right)^2+\left(2+1\right)^2}=3\sqrt{2}\)

Min y = \(3\sqrt{2}\) khi \(\frac{1-x}{2}=\frac{x+2}{1}\Leftrightarrow1-x=2x+4\Leftrightarrow3x=-3\Leftrightarrow x=-1\)

Ngoc Huyen Nguyen
Xem chi tiết
Nam Tước Bóng Đêm
25 tháng 4 2016 lúc 20:25

13/4 bn nha

Võ Xuân Lê Khôi
25 tháng 4 2016 lúc 20:27

13/4 tick minh nha ban

Nguyễn Thúy Hường
25 tháng 4 2016 lúc 21:14

Bằng 13/4 tick đúng cho mk đi mk chỉ chi tiết choyeu

Nguyễn Châu Hoàng Bảo
Xem chi tiết
Kiệt Nguyễn
26 tháng 12 2019 lúc 19:54

Tập xác định D của hàm số là \(\left[-2;5\right]\)

Ta có: \(f'\left(x\right)=\frac{-2x+4}{2\sqrt{-x^2+4x+21}}-\frac{-2x+3}{2\sqrt{-x^2+3x+10}}\)với \(x\in\left(-2;5\right)\)

\(f'\left(x\right)=0\Leftrightarrow\left(-2x+4\right)\sqrt{-x^2+3x+10}=\)\(\left(-2x+3\right)\sqrt{-x^2+4x+21}\)

Suy ra \(\left(-2x+4\right)^2\left(-x^2+3x+10\right)=\)\(\left(-2x+3\right)^2\left(-x^2+4x+21\right)\)(1)

Khai triển ta được: \(51x^2-104x+29=0\)

\(\Delta=104^2-4.51.29=4900,\sqrt{\Delta}=70\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{104+70}{102}=\frac{29}{17}\\x=\frac{104-70}{102}=\frac{1}{3}\end{cases}}\)

Thử lại chỉ có \(\frac{1}{3}\)là nghiệm của (1)

Lập bảng biến thiên của hàm số f(x) suy ra \(f\left(x\right)_{min}=f\left(\frac{1}{3}\right)=\frac{\sqrt{200}-\sqrt{98}}{3}\)

Khách vãng lai đã xóa
Nguyễn Linh Chi
27 tháng 12 2019 lúc 18:43

@ Cool@ Không sai. Làm thế cũng đc nhưng mà lớp 9 đã học đạo hàm đâu?

Phải cuối năm lớp 11 mới học  mà em,

Khách vãng lai đã xóa
tth_new
27 tháng 12 2019 lúc 18:52

Nguyễn Linh Chi Còn cách nào nữa không cô? Em tính dùng hệ số bất định rốt cuộc ra ngược dấu:(

Khách vãng lai đã xóa
Võ Hồng Phúc
Xem chi tiết
Anh Hoàng
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 7 2021 lúc 6:43

\(y=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(x-2\right)^2}=\left|2x-1\right|+\left|x-2\right|\)

\(y=\left[{}\begin{matrix}3x-3\left(\text{với }x\ge2\right)\\3-3x\left(\text{với }x\le\dfrac{1}{2}\right)\\x+1\left(\text{với }\dfrac{1}{2}\le x\le2\right)\end{matrix}\right.\) 

Từ đó ta có đồ thị hàm số như sau:

undefined

Từ đồ thị ta thấy phương trình \(\sqrt{4x^2-4x+1}+\sqrt{x^2-4x+4}=m\):

- Có đúng 1 nghiệm khi \(m=\dfrac{3}{2}\)

- Có 2 nghiệm phân biệt khi \(m>\dfrac{3}{2}\)

- Vô nghiệm khi \(m< \dfrac{3}{2}\)

Lê Song Chúc
Xem chi tiết
Mai Anh Khuất Thị
Xem chi tiết
Ngọc Anh Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 8 2021 lúc 23:25

Hàm xác định trên \(\left[0;8\right]\) khi và chỉ khi với mọi \(x\in\left[0;8\right]\) ta có:

\(x^2+4x-8+m\ge0\)

\(\Leftrightarrow m\ge-x^2-4x+8\)

\(\Leftrightarrow m\ge\max\limits_{\left[0;8\right]}\left(-x^2-4x+8\right)\)

Xét hàm \(f\left(x\right)=-x^2-4x+8\) trên \(\left[0;8\right]\)

\(-\dfrac{b}{2a}=-2< 0\Rightarrow\) hàm nghịch biến trên \(\left[0;8\right]\)

\(\Rightarrow\max\limits_{\left[0;8\right]}f\left(x\right)=f\left(0\right)=8\)

\(\Rightarrow m\ge8\)

Viêt Thanh Nguyễn Hoàn...
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 11 2021 lúc 23:08

Đặt \(\sqrt{x^2+4x+5}=t\Rightarrow t\in\left[\sqrt{5};\sqrt{17}\right]\)

\(\Rightarrow y=f\left(t\right)=t^2-2t+7\)

\(-\dfrac{b}{2a}=1\notin\left[\sqrt{5};\sqrt{17}\right]\)

\(f\left(\sqrt{5}\right)=10+4\sqrt{5}\) ; \(f\left(\sqrt{17}\right)=22+4\sqrt{17}\)

\(\Rightarrow y_{min}=10+4\sqrt{5}\) ; \(y_{max}=22+4\sqrt{17}\)