Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sơn Trần Bảo
Xem chi tiết
Bùi Hùng Minh
8 tháng 12 2018 lúc 19:59

Ta có :\(\frac{a}{b}\)=\(\frac{c}{d}\)

\(\Rightarrow\)1-\(\frac{a}{b}\)= 1- \(\frac{c}{d}\)

\(\Rightarrow\)\(\frac{b-a}{b}\)\(\frac{d-c}{d}\)(đpcm)

Sơn Trần Bảo
8 tháng 12 2018 lúc 20:03

thanks bạn

Bùi Hùng Minh
8 tháng 12 2018 lúc 20:05

đừng nói đây là bài tập về nhà của bạn đấy!!!!!!!!!!!

Tran Le Hoang Yen
Xem chi tiết
Nguyễn Huy Tú
20 tháng 10 2016 lúc 19:43

Giải:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk,c=dk\)

Ta có:

\(\left(\frac{a+b}{c+d}\right)^2=\left(\frac{bk+b}{dk+d}\right)^2=\left[\frac{b.\left(k+1\right)}{d.\left(k+1\right)}\right]^2=\left(\frac{b}{d}\right)^2\) (1)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{b^2}{d^2}=\left(\frac{b}{d}\right)^2\) (2)

Từ (1) và (2) suy ra \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)

Vậy \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)

Nguyễn Anh Duy
20 tháng 10 2016 lúc 19:56

theo đề bài ta có
\(ab\left(c^2+d^2\right)=ab.c^2+ab.d^2=\left(a.c\right).\left(b.c\right)+\left(a.d\right).\left(b.d\right)\\ cd\left(a^2+b^2\right)=cd.a^2+cd.b^2=\left(c.a\right).\left(d.a\right)+\left(c.b\right).\left(d.b\right)\)
\(\left(a.c\right)\left(b.c\right)+\left(a.d\right)\left(b.d\right)=\left(c.a\right)\left(d.a\right)+\left(c.b\right)\left(d.b\right)\) vì mỗi vế đều bằng nhau
- Cnứng minh \(\frac{\left(a^2+b^2\right)}{c^2+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
ta có vì \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{\left(a+b\right)}{\left(c+d\right)}=\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2}{c^2}=\frac{b^2}{d^2}\Rightarrow\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(a^2+b^2\right)}{\left(c^2+d^2\right)}\)

Hoàng Đặng Đoàn Đức
20 tháng 10 2016 lúc 19:53

Gọi a/b=c/d=k(k khác 0)

Ta có:

a=bk

c=dk

VT:(\(\frac{a+b}{c+d}\))2 =(\(\frac{bk+b}{dk+d}\))2 =(\(\frac{b\left(k+1\right)}{d\left(k+1\right)}\))2 =(\(\frac{b}{d}\))2 (1)

VP:\(\frac{a^2+b^2}{c^2+d^2}\)=\(\frac{b^2k^2+b^2}{d^2k^2+d^2}\)=\(\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}\)=\(\frac{b^2}{d^2}\)=(\(\frac{b}{d}\))2 (2)

Từ (1) và (2) suy ra bằng nhau

Trần Minh Đăng
Xem chi tiết
Trần Minh Đăng
29 tháng 7 2021 lúc 16:07
Ai trả lời đc cho mình cho 1 like
Khách vãng lai đã xóa
Hiền Gia
Xem chi tiết
I don
20 tháng 9 2018 lúc 15:52

ta có: a/b = c/d

=> a/c = b/d = (a+b)/(c+d) = (a-b)/(c-d)

=> (a+b)/(a-b) = (c+d)/(c-d) ( đpcm)

Nguyễn Hoàng Anh Phong
20 tháng 9 2018 lúc 15:53

ta có: a/b = c/d

=> a/c = b/d = (a+b)/(c+d) = (a-b)/(c-d)

=> (a+b)/(a-b) = (c+d)/(c-d) ( đpcm)

#

Hiền Gia
20 tháng 9 2018 lúc 15:53

cảm ơn bạn

Phác Xán Liệt
Xem chi tiết
Trần Quang Hưng
16 tháng 11 2016 lúc 20:46

Ta có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a.b}{c.d}\left(1\right)\)

Áp dụng tính chất dãy tỉ số bằng nhau tao có

\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\left(2\right)\)

Từ (1) và (2) ta có ĐPCM

sdhsdfgh
Xem chi tiết
Nguyễn Hoàng Minh
14 tháng 10 2021 lúc 16:49

a, Áp dụng t/c dtsbn:

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)

b, Áp dụng t/c dtsbn:

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{5b}{5d}=\dfrac{3a}{4c}=\dfrac{4b}{4d}=\dfrac{2a+5b}{2c+5d}=\dfrac{3a-4b}{3c-4d}\Rightarrow\dfrac{2a+5b}{3a-4b}=\dfrac{2c+5d}{3c-4d}\)

 

 

Nguyễn Hoàng Minh
14 tháng 10 2021 lúc 16:54

c, Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

Ta có \(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2k}{d^2k}=\dfrac{b^2}{d^2}\)

\(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\dfrac{b^2\left(k-1\right)^2}{d^2\left(k-1\right)^2}=\dfrac{b^2}{d^2}\)

Do đó \(\dfrac{ab}{cd}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

d, Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

Ta có \(\dfrac{ac}{bd}=\dfrac{bk\cdot dk}{bd}=k^2\)

\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\)

Do đó \(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)

Kỉ niệm tuổi thơ
Xem chi tiết
Hunter of Death
31 tháng 8 2015 lúc 19:36

Theo bai ra ta co

a/b=c/d

=> a/c=b/d=a+b/c+d=a-b/c-d

=> a-b/a+b = c-d/c+d 

Lik-e ung ho nhe dung tiec lik-e hom nay

Trần Đại Dương
Xem chi tiết
Yen Nhi
21 tháng 9 2021 lúc 20:01

Ta có \(\frac{a}{b}=\frac{c}{d}\)

a) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}+1=\frac{c}{d}+1\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\)

b) \(\frac{a}{c}=\frac{a+b}{c+d}\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\)

c) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}-1=\frac{c}{d}-1\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}\)

d) \(\frac{a}{b}=\frac{c}{d}\Rightarrow1:\frac{a}{b}=1:\frac{c}{d}\Rightarrow\frac{b}{a}=\frac{d}{c}\Rightarrow1-\frac{b}{a}=1-\frac{d}{c}\Rightarrow\frac{a-b}{a}=\frac{c-d}{c}\Rightarrow1:\frac{a-b}{a}=1:\frac{c-d}{c}\)

\(\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)

Khách vãng lai đã xóa
Cù Thanh Bình
22 tháng 9 2021 lúc 9:43

Đặt `a/b=c/d =k ->a=bk, c=dk`

`a,`

`(a+b)/b=(bk +b)/b=(b (k+1) )/b=k+1`

`(c+d)/d=(dk +d)/d=(d (k+1) )/d=k+1`

`-> (a+b)/b=(c+d)/d`

`b,`

`a/(a+b)=(bk)/(bk+b)=(bk)/(b(k+1) )=k/(k+1)`

`c/(c+d)=(dk)/(dk+d)=(dk)/(d(k+1) ) = k/(k+1)`

`-> a/(a+b)=c/(c+d)`

`c,`

`(a-b)/b=(bk-b)/b=(b(k-1) )/b=k-1`

`(c-d)/d=(dk-d)/d=(d(k-1) )/d=k-1`

`-> (a-b)/b=(c-d)/d`

`d,`

`a/(a-b) =(bk)/(bk-b)=(bk)/(b(k-1) )=k/(k-1)`

`c/(c-d)=(dk)/(dk-d)=(dk)/(d(k-1) )=k/(k-1)`

`-> a/(a-b)=c/(c-d)`

Khách vãng lai đã xóa
Lê Hoàng Tài
Xem chi tiết
Trần Minh Hoàng
4 tháng 10 2017 lúc 19:32

\(\frac{a+b}{b}=1\frac{a}{b}\)

\(\frac{c+d}{d}=1\frac{c}{d}\)

Vì \(\frac{c}{d}=\frac{a}{b}\)nên\(1\frac{c}{d}=1\frac{a}{b}\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\)

\(\RightarrowĐPCM\) 

Nguyễn Anh Thắng
4 tháng 10 2017 lúc 19:46

\({a \over b}={c \over d} => ad=bc \)

\({a+b \over b}={c+d \over d} \)  chỉ khi (a+b)d = (c+d)b <=> ad+bd=bc+bd mà ad=bc => ad+bd=bc+bd => \({a+b \over b}={c+d \over d}\)

mấy câu sau làm tương tự chủ yếu là nhân chéo