cho x,y,z thỏa mãn x.y.z=1 và x+y+z= 1/x +1/y +1/z tính P= (x^2017-1)(y^2018-1)(z^2019-1)
cho x,y,z thỏa mãn : x+y+z=1/2 ; 1/y^2+1/z^2+1/xyz=4 ; 1/x+1/y+1/z>0. tính Q = (x^2019+z^2019)+(y^2017+z^2017)(x^2021+y^2021)
cho 3 số x,y,z thỏa mãn x+y+z=1/x+1/y+1/z. tính q=(x^2018 - 1).[(-y)^2019 + 1].(z^2020 - 1)
Cho x, y, z thỏa mãn:
\(\frac{x}{2017}+\frac{y}{2018}+\frac{z}{2019}=1\)
\(\frac{2017}{x}+\frac{2018}{y}+\frac{2019}{z}=0\)
CMR:\(\frac{x^2}{2017^2}+\frac{y^2}{2018^2}+\frac{z^2}{2019^2}=1\)
1/Cho a,b,c thỏa mãn \(\frac{2}{\left(x^2+1\right)\left(x-1\right)}=\frac{ax+b}{x^2+1}+\frac{c}{x-1}\)
Tính giá trị biểu thức M=\(\frac{a^{2017}+b^{2018}+c^{2019}}{a^{2017}b^{2018}c^{2019}}\)
2/Cho x,y,z≠0 và x+y+z=2008
Tính giá trị biểu thức P=\(\frac{x^3}{\left(x-y\right)\left(x-z\right)}+\frac{y^3}{\left(y-x\right)\left(y-z\right)}+\frac{z^3}{\left(z-y\right)\left(z-x\right)}\)
cho x^2016 + y^2016 + z^2016 = x^2019 + y^2019 + z^2019 = 1
tính P = (x-1)^2017 + (y-1)^2018 + (z-1)^2019
Cho x,y,z >0 thỏa mãn x+1/y=y+1/z=z+1/x
Tính P=x.y.z
Cho 3 số x,y,z khác 0 đồng thời thỏa mãn \(x+y+z=\frac{1}{2},\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{1}{xyz}=4\) và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>0\)
Tính giá trị biểu thức Q=\(\left(y^{2017}+z^{2017}\right)\left(z^{2019}+x^{2019}\right)\left(x^{2021}+y^{2021}\right)\)
Cho x,y,z > 0 thỏa mãn x+y+z=1 và x^3+y^3+z^3=1
Tính S=x^2019+y^2019+z^2019
Sửa đề phải là \(x,y,z\ge0\)
Ta có: \(\hept{\begin{cases}x,y,z\ge0\\x+y+z=1\end{cases}}\)
\(\Rightarrow0\le x,y,z\le1\)
\(\Rightarrow0\le x^2,y^2,z^2\le1\)
Theo đề bài ta có
\(x^3+y^3+z^3=x+y+z\)
\(\Leftrightarrow x\left(1-x^2\right)+y\left(1-y^2\right)+z\left(1-z^2\right)=0\)
Để dấu = xảy ra và kết hợp với điều kiện đề bài thì ta suy ra được trong 3 số x, y, z có 2 số = 0 và 1 số = 1
\(\Rightarrow S=1\)
cho x,y,z thỏa mãn \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right):\left(\frac{1}{x+y+z}\right)=1\)
tìm B=\(\left(x^{2016}+y^{2016}\right)\left(y^{2017}+z^{2017}\right)\left(z^{2018}+x^{2018}\right)\)