1.1/2+1.2/3+1/3.4+1/4.5+..+1/x(x+1)=499/500
1.1 Tính D =\(\frac{1}{1.2}\)+\(\frac{1}{2.3}\)+\(\frac{1}{3.4}\)+\(\frac{1}{4.5}\)+...+\(\frac{1}{2018.2019}\)
1.2 Tìm x, biết: \(\frac{1}{2}\).x - 0,25.x + 3\(\frac{1}{4}\).x = \(\frac{-3}{2}\)+ 12,5%
giúp mìn với 1/1.2 +1/2.3+1/3.4+1/4.5+....+1/[x-1].x+1/x.[x+1]
a, 1313/1212:x=1/1.2+1/2.3+1/3.4+1/4.5+1/5.6
\(\frac{1313}{1212}:x=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\)\(\frac{1}{5.6}\)
\(\Leftrightarrow\frac{13}{12}:x=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(\Leftrightarrow\frac{13}{12}:x=1-\frac{1}{6}\)
\(\Leftrightarrow\frac{13}{12}:x=\frac{5}{6}\)
\(\Leftrightarrow x=\frac{13}{12}:\frac{5}{6}\)
\(\Leftrightarrow x=\frac{13}{10}\)
Vậy \(x=\frac{13}{10}\)
~~~~~Hok tốt ~~~~~
a,\(\frac{1313}{1212}\div x=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}\)
\(\frac{13}{12}\div x=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(\frac{13}{12}\div x=1-\frac{1}{6}\)
\(\frac{13}{12}\div x=\frac{5}{6}\)
\(x=\frac{13}{12}\div\frac{5}{6}\)
\(x=\frac{13}{12}\times\frac{6}{5}\)
\(x=\frac{13}{10}\)
Chúc bạn hok tốt !
\(\frac{1313}{1212}:x=\frac{1}{1x2}+\frac{1}{2x3}+...+\frac{1}{5x6}\)
\(\frac{1313}{1212}:\frac{101}{101}=\frac{13}{12}:x=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{5}-\frac{1}{6}\)
\(\frac{13}{12}:x=1-\frac{1}{6}\)
\(\frac{13}{12}:x=\frac{5}{6}\)
\(x=\frac{13}{12}:\frac{5}{6}\)
\(x=\frac{78}{60}=\frac{13}{10}\)
a, 1313/1212:x=1/1.2+1/2.3+1/3.4+1/4.5+1/5.6
\(\frac{1313}{1212}:x=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\)\(\frac{1}{5.6}\)
\(\Leftrightarrow\frac{13}{12}:x=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(\Leftrightarrow\frac{13}{12}:x=1-\frac{1}{6}\)
\(\Leftrightarrow\frac{13}{12}:x=\frac{5}{6}\)
\(\Leftrightarrow x=\frac{13}{12}:\frac{5}{6}\)
\(\Leftrightarrow x=\frac{13}{10}\)
Hok tốt
1) 1+2+3+4+...+n
1+3+5+7+...+2n+1
2+4+6+8+...+2n
tìm x:
26+8x=6x+46
3600:[(5x+335):x]=50
3) tính nhanh:
1.2+2.3+3.4+4.5+...+1999.2000
1.1+2.2+3.3+4.4+...+1999.1999
1.2.3+2.3.4+3.4.5+...+48.49.50
4) a)tổng 1+2+3+...+n có bao nhiêu số hạng dể kết quả bằng 190
b)có hay ko số tự nhiên n sao cho 1+2+3+4+...+n=2004
\(x-\frac{1}{1.2}-\frac{1}{2.3}-\frac{1}{3.4}=\frac{1}{4.5}\)
\(x-\frac{1}{1.2}-\frac{1}{2.3}-\frac{1}{3.4}=\frac{1}{4.5}\)
\(x-\frac{1}{1.2}-\frac{1}{2.3}-\frac{1}{3.4}-\frac{1}{4.5}=0\)
\(x-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}\right)=0\)
\(x-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}\right)=0\)
\(x-\left(1-\frac{1}{5}\right)=0\)
\(x-\frac{4}{5}=0\)
\(x=\frac{4}{5}\)
\(x-\frac{1}{1.2}-\frac{1}{2.3}-\frac{1}{3.4}=\frac{1}{4.5}\)
\(x-\left(1-\frac{1}{2}\right)-\left(\frac{1}{2}-\frac{1}{3}\right)-\left(\frac{1}{3}-\frac{1}{4}\right)=\frac{1}{4}-\frac{1}{5}\)
\(x-1+\frac{1}{2}-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}+\frac{1}{4}-\frac{1}{4}=\frac{-1}{5}\)
\(x-1=-\frac{1}{5}\)
\(x=\frac{4}{5}\)
\(x-\frac{1}{1.2}-\frac{1}{2.3}-\frac{1}{3.4}=\frac{1}{4.5}\)
\(\Rightarrow x-\text{}\text{}\frac{1}{1.2}-\frac{1}{2.3}-\frac{1}{3.4}-\frac{1}{4.5}=0\)
\(\Rightarrow x-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}\right)=0\)
\(\Rightarrow x-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}\right)=0\)
\(\Rightarrow x-\left(1-\frac{1}{5}\right)=0\)
\(\Rightarrow x-\frac{4}{5}=0\)
\(\Rightarrow x=\frac{4}{5}\)
Vậy \(x=\frac{4}{5}\)
_Chúc bạn học tốt_
F=(1.1/1.2).(2.2/2.3)(3.3/3.4).(4.4/4.5)
bạn ghi rõ lại đề bài đi
Bài làm:
Ta có: \(F=\left(\frac{1.1}{1.2}\right).\left(\frac{2.2}{2.3}\right).\left(\frac{3.3}{3.4}\right)\left(\frac{4.4}{4.5}\right)\)
\(F=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}\)
\(F=\frac{1}{5}\)
Bài làm
\(F=\left(\frac{1.1}{1.2}\right)\left(\frac{2.2}{2.3}\right)\left(\frac{3.3}{3.4}\right)\left(\frac{4.4}{4.5}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}=\frac{1.2.3.4}{2.3.4.5}=\frac{1}{5}\)
1.1+1.2+2.3+3.4+4.5+5.6+6.7+7.8+8.9+9.10+10
tìm x biết \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x.\left(x+1\right)}=\frac{2019}{2020}\)
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x(x+1)}=\frac{2019}{2020}\)
\(\Rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2019}{2020}\)
\(\Rightarrow1-\frac{1}{x+1}=\frac{2019}{2020}\)
\(\Rightarrow\frac{1}{x+1}=1-\frac{2019}{2020}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2020}\)
\(\Rightarrow x+1=2020\Leftrightarrow x=2019\)
Vậy x = 2019