Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ngô Tuấn Vũ

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
31 tháng 12 2017 lúc 4:09

Ta có: f(x) + h(x) = g(x)

Suy ra: h(x) = g(x) – f(x) = (x4 – x3 + x2 + 5) – (x4 – 3x2 + x – 1)

            = x4 – x3 + x2 + 5 – x4 + 3x2 – x + 1

            = ( x4 – x4) – x3 + (x2 + 3x2 ) – x + (5+ 1)

            = -x3 + 4x2 – x + 6

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 12 2017 lúc 14:58

Ta có: f(x) – h(x) = g(x)

Suy ra: h(x) = f(x) – g(x) = (x4 – 3x2 + x – 1) – (x4 – x3 + x2 + 5)

            = x4 – 3x2 + x – 1 – x4 + x3 – x2 – 5

            = (x4 – x4) + x3 – (3x2 + x2) + x - (1+ 5)

            = x3 – 4x2 + x – 6

Ak_Đây_Ko_Hại
Xem chi tiết
Dương Hà An
18 tháng 3 2017 lúc 10:18

=>5x=55,35

=>x=55,35:5=11.07

Đỗ Duy Mạnh
18 tháng 3 2017 lúc 10:22

x4 + x = 55 , 35

x4 + x1 = 55 , 35

x x ( 1 + 4 ) = 55 , 35

x x 5 = 55 , 35

x = 55 , 35 : 5

x = 11 , 07

Vũ Ngọc Bảo Khuê
18 tháng 3 2017 lúc 10:25

x4 + x = 55,35

x5 = 55,35

x = 55,35 :5

x = 11,07

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 2 2019 lúc 11:24

25,x4 > 25,74      

x = 8 hoặc x = 9

Lil Bitch
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 12 2020 lúc 17:33

Đặt \(\sqrt{x^2+2012}=t>0\Rightarrow2012=t^2-x^2\)

Pt trở thành:

\(x^4+t=t^2-x^2\)

\(\Leftrightarrow x^4-t^2+x^2+t=0\)

\(\Leftrightarrow\left(x^2+t\right)\left(x^2-t+1\right)=0\)

\(\Leftrightarrow x^2+1=t\)

\(\Leftrightarrow x^2+1=\sqrt{x^2+2012}\)

\(\Leftrightarrow x^4+2x^2+1=x^2+2012\)

\(\Leftrightarrow x^4+x^2-2011=0\)

\(\Leftrightarrow x=\pm\sqrt{\dfrac{-1+\sqrt{8045}}{2}}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 9 2017 lúc 16:26

Ta có: x 4 = 7 ⇔ x 2 2 = 7

⇔ x 2 = 7 ⇔  x 2  = 7

Vậy x = 7 và x = -  7

Mai Nguyễn Gia Hân
Xem chi tiết
Nhân Vật Phản Diện
25 tháng 10 2023 lúc 20:03

a,x=0;1

 

37	Vũ Hoàng Minh
25 tháng 10 2023 lúc 22:11

a.x=0;1

b.x=0;1;2;3;4;5;6;7;8;9

hbfbhdfchcjxcfdfs
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 3 2017 lúc 14:52

nnkh2010
Xem chi tiết
Toru
13 tháng 1 2024 lúc 8:35

Bài 1:

\(a,x^4+5x^2+9\\=(x^4+6x^2+9)-x^2\\=[(x^2)^2+2\cdot x^2\cdot3+3^2]-x^2\\=(x^2+3)^2-x^2\\=(x^2+3-x)(x^2+3+x)\)

\(b,x^4+3x^2+4\\=(x^4+4x^2+4)-x^2\\=[(x^2)^2+2\cdot x^2\cdot2+2^2]-x^2\\=(x^2+2)^2-x^2\\=(x^2+2-x)(x^2+2+x)\)

\(c,2x^4-x^2-1\\=2x^4-2x^2+x^2-1\\=2x^2(x^2-1)+(x^2-1)\\=(x^2-1)(2x^2+1)\\=(x-1)(x+1)(2x^2+1)\)

Toru
13 tháng 1 2024 lúc 8:45

Bài 2:

\(a,\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=120\)

\(\Leftrightarrow\left[\left(x+1\right)\left(x+4\right)\right]\cdot\left[\left(x+2\right)\left(x+3\right)\right]=120\)

\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)=120\) (1)

Đặt \(x^2+5x+5=y\), khi đó (1) trở thành:

\(\left(y-1\right)\left(y+1\right)=120\)

\(\Leftrightarrow y^2-1=120\)

\(\Leftrightarrow y^2=121\)

\(\Leftrightarrow\left[{}\begin{matrix}y=11\\y=-11\end{matrix}\right.\)

+, TH1: \(y=11\Leftrightarrow x^2+5x+5=11\)

\(\Leftrightarrow x^2+5x-6=0\)

\(\Leftrightarrow x^2-x+6x-6=0\)

\(\Leftrightarrow x\left(x-1\right)+6\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-6\end{matrix}\right.\left(\text{nhận}\right)\)

+, TH2: \(y=-11\Leftrightarrow x^2+5x+5=-11\)

\(\Leftrightarrow x^2+5x+16=0\)

\(\Leftrightarrow\left[x^2+2\cdot x\cdot\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2\right]-\dfrac{25}{4}+16=0\)

\(\Leftrightarrow\left(x+\dfrac{5}{2}\right)^2+\dfrac{39}{4}=0\)

Ta thấy: \(\left(x+\dfrac{5}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+\dfrac{5}{2}\right)^2+\dfrac{39}{4}\ge\dfrac{39}{4}>0\forall x\)

Mà \(\left(x+\dfrac{5}{2}\right)^2+\dfrac{39}{4}=0\)

\(\Rightarrow\) loại

Vậy \(x\in\left\{1;-6\right\}\).

\(b,\) Đề thiếu vế phải rồi bạn.