Ix-7I+I3-xI=12/Iy+1I+3
Ix-1I+I3-xI =6/Iy+3I +3
Giải các pt sau:
a) I2x-5I = I3-8xI
b) I4x-3I = 5-2x
c) Ix+1I+Ix+2I = I4-xI+I5-xI
d) Ix-3I-2Ix-2I+3Ix-1I=0
Các bạn giúp mk với ạ:33
a: \(\Leftrightarrow\left[{}\begin{matrix}2x-5=3-8x\\2x-5=8x-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}10x=8\\-6x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=-\dfrac{1}{3}\end{matrix}\right.\)
Tìm x,y
a) Ix-1I + Ix+2I =0
b) I2x-1I + Iy^2-yI = 0
c) Ix+1I + Ix+2I =3
#)Giải :
a) \(\left|x-1\right|+\left|x+2\right|=0\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}}\)
b) \(\left|2x-1\right|+\left|y^2-y\right|=0\Leftrightarrow\orbr{\begin{cases}2x-1=0\\y^2-y=0\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=1\\y^2=y\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{1}{2}\\y\in\left\{-1;0;1\right\}\end{cases}}}\)
tim x,y biet Ix-1I+Ix-2I+Iy-3I+Ix-4I=3
ta có:
\(\left|x-1\right|+\left|x-2\right|+\left|y-3\right|+\left|x-4\right|\)
\(=\left|x-1\right|+\left|x-2\right|+\left|y-3\right|+\left|4-x\right|\)
\(\ge\left|x-1+4-x\right|+\left|x-2\right|+\left|y-3\right|\)
\(=3+\left|x-2\right|+\left|y-3\right|\)
\(\ge3\)
Dấu "=" xả ra khi \(\hept{\begin{cases}\left(x-1\right)\left(4-x\right)\ge0\\\left|x-2\right|=0\\\left|y-3\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}1\le x\le4\cdot\\x=2\left(TM\cdot\right)\\y=3\end{cases}}\)
Vậy \(x=2;y=3\)
(x-1) + (x-2) + (x-3) + (x-4) = 3
(x+x+x+x) - (1+2+3+4) = 3
X x 4 - 10 = 3
X x 4 = 3 + 10
X x 4 = 13
x = 13 : 4
x = \(\frac{13}{4}\)
tim x nguyen thoa man :Ix+1I+Ix-2I+Ix+7I=5x-10
Ta có:\(\left|x+1\right|\ge0;\left|x-2\right|\ge0;\left|x+7\right|\ge0\)
\(\Rightarrow\left|x+1\right|+\left|x-2\right|+\left|x+7\right|\ge0\)
\(\Rightarrow5x-10\ge0\)
\(\Rightarrow5x\ge10\)
\(\Rightarrow x\ge2\)
\(\Rightarrow\left|x+1\right|=x+1\)
\(\left|x-2\right|=x-2\)
\(\left|x+7\right|=x+7\)
Ta có:\(\left|x+1\right|+\left|x-2\right|+\left|x+7\right|=5x-10\)
\(\Rightarrow x+1+x-2+x+7=5x-10\)
\(\Rightarrow\)\(3x+6=5x-10\)
\(\Rightarrow6+10=5x-3x\)
\(\Rightarrow2x=16\)
\(\Rightarrow x=8\)
Vậy x=8 thỏa mãn
Tìm cá số nguyên x, y biết
a) Ix + 3I + Iy - 1I = 0
b) Ix + 5I + Iy + 1I \(\le\)0
Bài giải
a, \(\left|x+3\right|+\left|y-1\right|=0\)
Mà \(\hept{\begin{cases}\left|x+3\right|\ge0\forall x\\\left|y-1\right|\ge0\forall x\end{cases}}\Rightarrow\hept{\begin{cases}\left|x+3\right|=0\\\left|y-1\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)
Vậy \(\left(x\text{ ; }y\right)=\left(-3\text{ ; }1\right)\)
b, \(\left|x+5\right|+\left|y+1\right|\le0\)
Mà \(\hept{\begin{cases}\left|x+5\right|\ge0\forall x\\\left|y+1\right|\ge0\end{cases}}\Rightarrow\text{ }\left|x+5\right|+\left|y+1\right|=0\)
Dấu " = " xảy ra khi \(\hept{\begin{cases}\left|x+5\right|=0\\\left|y+1\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-5\\y=-1\end{cases}}\)
Vậy \(\left(x\text{ ; }y\right)=\left(-5\text{ ; }-1\right)\)
I2-xI+2=x
Ix-1I-x+1=0
Ix-1I=I2-xI
#)Giải :
\(\left|2-x\right|+2=x\)
\(\Rightarrow\orbr{\begin{cases}\left|2-x\right|=x\\2=x\end{cases}\Rightarrow x=2}\)
Vậy \(x=2\)
\(\left|x-1\right|\left|-x-1\right|=0\)
\(\Rightarrow\orbr{\begin{cases}\left|x-1\right|=0\\\left|-x-1\right|=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}}\)
Vậy \(x\in\left\{1;-1\right\}\)
Tính x
a, I 3x-2I<4
b, I3-2xI<x+1
c, I3x-1I>5
d, I3x+1I>I x-2I
e, I x-1I> I x+2I -3
g, Ix-1I+Ix+5I>8
h, Ix-3I +Ix+1I<8
a: \(\Leftrightarrow\left\{{}\begin{matrix}3x-2>-4\\3x-2< 4\end{matrix}\right.\Leftrightarrow-\dfrac{2}{3}< x< 2\)
c: \(\Leftrightarrow\left[{}\begin{matrix}3x-1>5\\3x-1< -5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>2\\x< -\dfrac{4}{3}\end{matrix}\right.\)
d: \(\Leftrightarrow\left[{}\begin{matrix}3x+1>x-2\\3x+1< -x+2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x>-3\\4x< 1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>-\dfrac{3}{2}\\x< \dfrac{1}{4}\end{matrix}\right.\)
A) 15 - 2 IxI= 13
B) 3.Ix-1I +2.Ix-1I= 3.Ix-1I +4
C) 2x+1 . 22014 = 22015
D) Ix+2I = 0
E) Ix-5I = I-7I
G) 1<Ix-2I<4
# Chú thích: Dấu " I " là trị tuyệt đối.