Tim GTLN cua:
A= 2/ (x+√ x+1)
cho x 0,y 0, x y 2012. a, tim GTLN cua A 2x 2 8xy 2y 2 x 2 2xy y 2 b, tim GTNN cua B 1 2012 x 2 1 2012 y 2
tim gtln cua bt A=x^2/(x^4+x^2+1)
Ta có :
\(3A=\frac{3x^2}{x^4+x^2+1}=\frac{x^4+x^2+1-x^4+2x^2-1}{x^4+x^2+1}=\frac{\left(x^4+x^2+1\right)-\left(x^2-1\right)^2}{x^4+x^2+1}\)
\(=1-\frac{\left(x^2-1\right)^2}{x^4+x^2+1}\le1\)
\(\Leftrightarrow3A\le1\Rightarrow A\le\frac{1}{3}\)có GTLN là \(\frac{1}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow x=\pm1\)
a)tim GTLN cua P=x^2/x^4+x^2+1
b)cho 4x+5y=40, tinh GTLN cua Q=xy
a) \(P=\frac{x^2}{x^4+x^2+1}\)
Vì x2; x4 và +1 đều lớn hơn hoặc bằng 0 với mọi x ( trừ 1 :v )
suy ra P >= với mọi x
Mà x2 < x4 + x2 + 1
suy ra P <= 1
Dấu "=" xảy ra <=> P = 1
<=> x2 = x4 + x2 + 1
<=> x4 + x2 + 1 - x2 = 0
<=> x4 + 1 = 0
<=> x4 = -1
mà x4 >= với mọi x
=> vô nghiệm
P.s : tìm đc Pmax khi <=> P = 0
<=> x2 = 0
<=> x = 0
Vậy Pmax = 0 <=> x = 0
Nhầm đoạn P.s :
Tìm đc Pmin nha bạn :v
lí luận >= 0 như trên ta có P >= 0 với mọi x
Dấu "=" xảy ra <=> P = 0
<=> x2 = 0 ( vì mẫu ko bao giờ = 0 đc )
<=> x = 0
Vậy Pmin = 0 <=> x = 0
cho x>0,y>0, x+y=2012.
a, tim GTLN cua A= (2x^2+8xy+2y^2)/ (x^2+2xy+y^2)
b, tim GTNN cua B=(1+(2012/x))^2+(1+(2012/y))^2
1, tim GTLN cua A=13/(x+5)^2+7
2, tim GTNN cua B=|x+2017|+(y+3)^2+2017
3, cho a-1/2=b+3/4=c-5/6 va 5a-3b-4c=46. Tim a,b,c.
cho 2 so x va y thoa man 3x+y=1
a) Tim GTNN cua bt M=3x^2+y^2
b) Tim GTLN cua bt N=x*y
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
2.
A) tim GTLN cua : -|2x-4|+2016
B) tim GTLN cua : 1981+|x-4|
Jup mik di mik cho 1 like ))))♡♡♡♡
a) \(-\left|2x-4\right|+2016\)
Vì: \(\left|2x-4\right|\ge0\) , với mọi x
=> \(-\left|2x-4\right|\le0\)
=> \(-\left|2x-4\right|+2016\le2016\)
Vậy GTLN của bt đã cho la 2016 khi \(2x-4=0\Leftrightarrow x=2\)
b) \(1981+\left|x-4\right|\)
Vì: \(\left|x-4\right|\ge0\) , với mọi x
=> \(1981+\left|x-4\right|\ge1981\)
Vậy GTNN của bt đã cho là 1981 khi \(x-4=0\Leftrightarrow x=4\)
Bai 1 :Tim GTLN cua A = -|1,5 - x| - 2
Ta có: \(-\left|1,5-x\right|\le0\forall x\)
\(\Rightarrow-\left|1,5-x\right|-2\le-2\forall x\)
Dấu \("="\) xảy ra khi \(\left|1,5-x\right|=0\)
\(\Rightarrow1,5-x=0\Rightarrow x=1,5\)
Vậy \(Min_A=-2\) khi \(x=1,5.\)
tim gtln va gtnn cua x/(x^2+1)
Đặt \(y=\frac{x}{x^2+1}\Rightarrow y.\left(x^2+1\right)=x\Rightarrow yx^2+y-x=0\)
\(\Delta=1-4y^2\)
Để y xác định thì \(\Delta\ge0\Rightarrow1-4y^2\ge0\Leftrightarrow\frac{-1}{2}\le y\le\frac{1}{2}\)
Vậy GTNN của phân thức trên là -1/2 tại x=-1
GTLN của phên thức trên là 1/2 tại x=1