viết phương trình mặt cầu (S) có tâm I (3;-4;2) và tiếp xúc với mặt phẳng OXY
viết phương trình mặt cầu (S) có tâm I (3;-4;2) và tiếp xúc với mặt phẳng Oxy
Do (S) tiếp xúc Oxy \(\Rightarrow R=\left|z_I\right|=2\)
Phương trình (S):
\(\left(x-3\right)^2+\left(y+4\right)^2+\left(z-2\right)^2=4\)
Trong không gian tọa độ Oxyz cho mặt cầu (S) có tâm I(1;-2;3) và đường thẳng d có phương trình x = 1 + 2 t y = - 1 - t z = 1 + 2 t . Biết rằng mặt cầu (S) tiếp xúc với đường thẳng d. Viết phương trình mặt cầu (S).
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I nằm trên tia Ox bán kính bằng 3 và tiếp xúc với mặt phẳng (Oyz). Viết phương trình mặt cầu (S).
A. x 2 + y 2 + z - 3 2 = 9
B. x 2 + y 2 + z + 3 2 = 9
C. x - 3 2 + y 2 + z 2 = 3
D. x - 3 2 + y 2 + z 2 = 9
Chọn D.
Phương pháp: Tìm tâm và bán kính mặt cầu.
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I nằm trên tia Ox bán kính bằng 3 và tiếp xúc với mặt phẳng (Oyz). Viết phương trình mặt cầu (S).
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I(1;-1;1) và mặt phẳng (P): 2x - y + 2z + 1 = 0. Biết (P) cắt mặt cầu (S) theo giao tuyến là một đường tròn có bán kính bằng 3. Viết phương trình của mặt cầu (S).
A. ( x - 1 ) 2 + ( y + 1 ) 2 + ( z - 1 ) 2 = 13
B. ( x - 1 ) 2 + ( y + 1 ) 2 + ( z - 1 ) 2 = 169
C. ( x + 1 ) 2 + ( y - 1 ) 2 + ( z + 1 ) 2 = 169
D. ( x + 1 ) 2 + ( y - 1 ) 2 + ( z + 1 ) 2 = 169
Trong không gian với hệ trục Oxyz, cho mặt cầu (S) có tâm I (0; -2; 1) và mặt phẳng (P): x + 2y - 2z + 3 = 0. Biết mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là một đường tròn có diện tích là 2π. Viết phương trình mặt cầu (S).
A. ( S ) : x 2 + ( y + 1 ) 2 + ( z + 1 ) 2 = 3
B. ( S ) : x 2 + ( y + 2 ) 2 + ( z + 1 ) 2 = 1
C . ( S ) : x 2 + ( y + 2 ) 2 + ( z - 1 ) 2 = 3
D. ( S ) : x 2 + ( y + 2 ) 2 + ( z + 1 ) 2 = 2
Chọn C
Ta có h = d(I, (P)) = 1
Gọi (C) là đường tròn giao tuyến có bán kính r.
Vì S = r2.π = 2π <=> r = √2
Mà R2 = r2 + h2 = 3 => R = √3
Vậy phương trình mặt cầu tâm i (0; -2; 1) và bán kính R = √3
Cho I(4;-4;1). Viết phương trình mặt cầu (S) tâm I sao cho (S) cắt mặt phẳng (Oxy) theo một đường tròn có bán kính r = 2 .
Cho mặt cầu (S) có tâm I(1;2;-1) và bán kính R=3. Phương trình mặt cầu (S’) đối xứng với mặt cầu (S) qua gốc tọa độ là:
A. ( x - 1 ) 2 + ( y - 2 ) 2 + ( z + 1 ) 2 = 9
B. ( x + 1 ) 2 + ( y + 2 ) 2 + ( z - 1 ) 2 = 9
C. x 2 + y 2 + z 2 - 2x - 4y + 2z - 3 = 0
D. x 2 + y 2 + z 2 = 9
Đáp án B
Mặt cầu (S’) đối xứng với mặt cầu (S) qua gốc tọa độ nên mặt cầu (S’) có tâm I’(-1;-2; 1) đối xứng với I qua gốc O và có bán kính R’ = R = 3.
Phương trình mặt cầu (S’) là: ( x + 1 ) 2 + ( y + 2 ) 2 + ( z - 1 ) 2 = 9
Viết phương trình mặt cầu (S) có tâm I nằm trên tia Oy, bán kính R = 4 và tiếp xúc với mặt phẳng (Oxz)
A. x 2 + y 2 + z − 2 2 = 16.
B. x 2 + y + 4 + z 2 = 16.
C. x 2 + y − 4 + z 2 = 16.
D. x 2 + y ± 4 + z 2 = 16.
Đáp án C.
Ta có I ∈ O y ⇒ I 0 ; i ; 0 , i > 0.
O x z : y = 0 ⇒ d I ; O x z = R = 4 ⇔ i 4 = 4 ⇒ i = 4 ⇒ I 0 ; 4 ; 0 ⇒ x 2 + y − 4 + z 2 = 16.
Cho mặt cầu (S) có tâm I(2;1;-1) và tiếp xúc với mặt phẳng ( α ) có phương trình 2x-2y-z +3 = 0. Bán kính mặt cầu (S) là
A. 2 9
B. 2
C. 2 3
D. 4 3
Đáp án B
Ta có: bán kính mặt cầu tâm I tiếp xúc với mặt phẳng ( α ) là khoảng cách từ I đến mặt phẳng