Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Ngọc Lan
Xem chi tiết
Trần Long Thăng
Xem chi tiết
Phát Trương Hưng
Xem chi tiết
Ngô Nhất Khánh
Xem chi tiết
Lê Chí Cường
24 tháng 10 2015 lúc 19:40

Vì p là số nguyên tố lớn hơn 3

=>p là số lẻ

=>p=2k+1

Khi đó: (p-1).(p+1)=(2k+1-1).(2k+1+1)=2k.(2k+2)=2k.2.(k+1)=4.k.(k+1)

Vì k và k+1 là 2 số tự nhiên liên tiếp

=>k.(k+1) chia hết cho 2

=>4.k.(k+1) chia hết cho 4.2

=>4.k.(k+1) chia hết cho 8

=>(p-1).(p+1) chia hết cho 8(1)

Lại có: (p-1).(p+1)=p2-1

Vì p là số nguyên tố lớn hơn 3

=>p không chia hết cho 3

=>p2 chia 3 dư 1

=>p2-1 chia hết cho 3

=>(p-1).(p+1) chia hết cho 3(2)

Từ (1) và (2) ta thấy:

(p-1).(p+1) chia hết cho 8 và 3

Mà (8,3)=1

=>(p-1).(p+1) chia hết cho 8.3

=>(p-1).(p+1) chia hết cho 24

Vậy (p-1).(p+1) chia hết cho 24

Hà_Bảo_Trâm
Xem chi tiết
o0o Đừng hỏi tôi yêu ai...
Xem chi tiết
Anh Mai
2 tháng 2 2017 lúc 19:34

Ta có : (p-1)(p+1) = p- 1

Vì p là số nguyên tố lớn hơn 3 nên p ko chia hết cho 3. Suy ra : pkhông chia hết cho 3

\(\Rightarrow\)pchia 3 dư 1 (Vì plà số chính phương)

\(\Rightarrow\)p-1 \(⋮\)3

Vì p là số nguyên tố lớn hơn 3 nên p không chia hết cho 2. Suy ra p-1\(⋮\)2 và p+1\(⋮\)2.

\(\Rightarrow\)(p-1)(p+1) là tích của 2 số tự nhiên liên tiếp

Do đó: (p-1)(p+1) \(⋮\)8

Vì (p-1)(p+1) chia hết cho 3 và 8 nên (p-1)(p+1) \(⋮\)24 (đpcm)

Lê Đăng Tài
Xem chi tiết
Dũng Lê Trí
20 tháng 6 2017 lúc 10:11

\(a\left(a^2-1\right)\)

+ Xét : a là số lẻ thì a^2 chia 8 dư 1

Vậy a^2-1 chia hết cho 8 (1)

+ Xét : vì 3<a

Nên a^2 chia 3 dư 1

Và a^2-1 chia hết cho 3 (2)

Từ (1) và (2) suy ra : a^2-1 là bội của 3 và 8

=> a(a^2-1) chia hết cho 24 (đpcm)

Dũng Lê Trí
20 tháng 6 2017 lúc 20:41

Another way : 

A là số nguyên tố lớn hơn 3 nên a không chia hết cho 2,nghĩa là a có dạng là 2k+1

Từ đó ta thay vào :

\(a\left(a^2-1\right)=a\left(a+1\right)\left(a-1\right)\)

Suy ra a chia hết cho 4(1)

+ Mặt khác : \(a\left(a^2-1\right)=a\left(a-1\right)\left(a+1\right)\)là tích của 3 số tự nhiên liên tiếp nên :

\(\orbr{\begin{cases}a⋮2\left(2\right)\\a⋮3\left(3\right)\end{cases}}\)

Từ (1) (2) và (3)

Ta có : a(a^2-1) chia hết cho 24

Nguyễn Thị Nguyệt Minh
Xem chi tiết
Bùi Như Lạc
Xem chi tiết
ST
22 tháng 11 2017 lúc 19:26

Ta có: A = n2 - 1 = (n - 1)(n + 1)

Vì n là số nguyên tố lớn hơn 3 nên (n - 1)(n + 1) là tích hai số chẵn liên tiếp => A \(⋮\) 8 (1)

Vì n là số nguyên tố lớn hơn 3 nên n có dạng 3k + 1 hoặc 3k + 2 (k thuộc N)

- Nếu n = 3k + 1 thì:

A = (n - 1)(n + 1) = (3k + 1 - 1)(3k + 1 + 1) = 3k(3k + 2) \(⋮\) 3

- Nếu n = 3k + 2 thì:

A = (n - 1)(n + 1) = (3k + 2 - 1)(3k + 2 + 1) = (3k + 1)(3k + 3) = 3(3k + 1)(k + 1) \(⋮\) 3

Từ hai trường hợp trên ta có A \(⋮\) 3 (2)

Mà (8,3) = 1 (3)

Từ (1),(2),(3) => \(A⋮24\)