chứng minh biểu thức luôn dương
a) A = x^2-3x+8
b) b = 2x^2-2x+2
mình cần kết quả 1 cách nhanh nhất
Chứng minh các giá trị của các biểu thức sau luôn dương
a)x^2-2x+y^2+4y+6
b)x^2-2x+2
\(a)x^2-2x+y^2+4y+6\\=(x^2-2x+1)+(y^2+4y+4)+1\\=(x^2-2\cdot x\cdot1+1^2)+(y^2+2\cdot y\cdot2+2^2)+1\\=(x-1)^2+(y+2)^2+1\)
Ta thấy: \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2+1\ge1>0\forall x,y\)
hay giá trị của biểu thức trên luôn dương
\(b)x^2-2x+2\\=(x^2-2x+1)+1\\=(x^2-2\cdot x\cdot1+1^2)+1\\=(x-1)^2+1\)
Ta thấy: \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-1\right)^2+1\ge1>0\forall x\)
hay giá trị của biểu thức trên luôn dương
Chứng minh biểu thức không phụ thuộc vào biến x,y
a, A= (3x-5)(2x+11)-(2x+3)(3x+7)
b, B=(x-1)2+(x+1)2-2(x+1)(x-1)
Chứng minh
a, A=x(x-6)+10 luôn luôn dương với mọi x
b, B=x2-2x+9y2-6y+3
Chứng minh bt k phụ thuộc vào biến:
a) \(A=\left(3x-5\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)\)
\(=6x^2+33x-10x-55-6x^2-14x-9x-21=-76\)
Vậy giá trị của A k phụ thuộc vào biến
b) \(\left(x-1\right)^2+\left(x+1\right)^2-2\left(x+1\right)\left(x-1\right)\)
\(=\left[\left(x-1\right)-\left(x+1\right)\right]^2=\left(x-1-x-1\right)^2=-2^2=4\)
Vậy giá trị của bt B k phụ thuộc vào biến
Chứng minh luôn luôn dương:
a) \(A=x\left(x-6\right)+10=x^2-6x+9+1=\left(x-3\right)^2+1\)
Vì: \(\left(x-3\right)^2\ge0,\forall x\)
=> \(\left(x-3\right)^2+1>0,\forall x\)
=>đpcm
b) \(B=x^2-2x+9y^2-6y+3=\left(x^2-2x+1\right)+\left(9y^2-6y+1\right)+1=\left(x-1\right)^2+\left(3y-1\right)^2+1\)
Vì: \(\left(x-1\right)^2\ge0,\forall x;\left(3y-1\right)^2\ge0,\forall y\)
=> \(\left(x-1\right)^2+\left(3y-1\right)^2\ge0,\forall x,y\)
=> \(\left(x-1\right)^2+\left(3y-1\right)^2+1>0\)
=>đpcm
rút gọn biểu thức rồi tính giá trị biểu thức:
a)A=(2x+3y)(x2-xy+1)-x2(2x-y)-3x tại x=-1;y=2
b)B=2xy.(1/4x2-3y)+5y(xy-x3+1) tại x=1;y=1/2
mình cần gấp 5 phút nữa
Thực hiện phép tính (10x^5y^2-6x^2y^5+8x^2y^5):(-2x^2y^2)
Bài 1: Chứng minh biểu thức luôn dương:
a, 49x^2-28x+7
b, x^2+2/5x+1/5
Bài 2 : chứng minh biểu thức luôn âm:
a,-9x^2+24x-12
b,-3x^2+2x-6
Bài 1
\(a,\)\(49x^2-28x+7\)
\(=\left(7x\right)^2-2.7x.2+2^2+3\)
\(=\left(7x-2\right)^2+3\ge3\)( luôn dương )
Dấu bằng sảy ra khi và chỉ khi \(\left(7x-2\right)^2=0\)
\(\Rightarrow7x-2=0\)
\(\Rightarrow x=\frac{2}{7}\)
Bài 1 b
\(x^2+\frac{2}{5}x+\frac{1}{5}\)
\(=x^2+2.x.\frac{1}{5}+\frac{1}{25}+\frac{4}{25}\)
\(=\left(x+\frac{1}{5}\right)^2+\frac{4}{25}\ge\frac{4}{25}\)( luôn dương )
Dấu bằng sảy ra khi và chỉ khi \(\left(x+\frac{1}{5}\right)^2=0\)
\(\Rightarrow x+\frac{1}{5}=0\)
\(\Rightarrow x=-\frac{1}{5}\)
Bài 2 a
\(-9x^2+24x-12\)
\(=-\left(3x^2-2.3x.4+4^2-4\right)\)
\(-\left[\left(3x-4\right)^2-4\right]\)
\(=-\left(3x-4\right)^2+4\)
Sai đề chăng ?
Chứng minh các biểu thức sau luôn âm
a) -1/4x^2+x-2
b)-3x^2-6x-9
c)-2x^2+3x-6
d)-x^2-y^2+2x-2y-3
Chứng minh biểu thức sau:
A=(2x+1).(x-1)-2x.(x+2)-5.(-x+3)+4
B=(4x+3).(2x-5)-(8x+1).(x+3)+13.(3x+1)+2
C=(4x+5).(4x-5)-(2x+3).(8x-4)-8.(-2x+1)+3
MÌNH ĐANG CẦN GẤP BẠN NÀO LÀM XONG NHANH NHẤT MÌNH SẼ TICK NGAY Ạ
Đề bài mình viết thiếu là CM biểu thức sau không phụ thuộc vào x ( nghĩa là kết quả phải ra số tự nhiên không có x )
\(A=\left(2x+1\right)\left(x-1\right)-2x\left(x+2\right)-5\left(-x+3\right)+4\)
\(=2x^2-2x+x-1-2x^2-4x+5x-15+4\)
\(=-12\left(đpcm\right)\)
\(B=\left(4x+3\right)\left(2x-5\right)-\left(8x+1\right)\left(x+3\right)+13\left(3x+1\right)+2\)
\(=8x^2-20x+6x-15-\left(8x^2+24x+x+3\right)+39x+13+2\)
\(=-3\left(đpcm\right)\)
Chứng minh các biểu thức sau luôn âm
a) -1/4x^2+x-2
b)-3x^2-6x-9
c)-2x^2+3x-6
d)-x^2-y^2+2x-2y-3
a)\(-\frac{1}{4}x^2+x-2=-\left[\left(\frac{1}{2}x\right)^2-2.\frac{1}{2}x+1+1\right]\)
\(=-1-\left(\frac{1}{2}x-1\right)^2\le-1\left(đpcm\right)\)
b)\(-3x^2-6x-9=-3\left(x^2-2x+1+2\right)\)
\(=-6-3\left(x-1\right)^2\le-6\left(đpcm\right)\)
c)\(-2x^2+3x-6=-2\left(x^2-\frac{3}{2}x+3\right)\)
\(=-2\left(x^2-2.\frac{3}{4}x+\frac{9}{16}+\frac{39}{16}\right)\)
\(=-\frac{39}{8}-2\left(x-\frac{3}{4}\right)^2\le-\frac{39}{8}\)
d) tương tự
a)\(-\frac{1}{4}x^2+x-2=-\left(\frac{1}{4}x^2-x+2\right)=-\left[\left(\frac{1}{2}x\right)^2-2.\frac{1}{2}x+1+1\right]\)
\(=-\left[\left(x-\frac{1}{2}\right)^2+1\right]=-\left(x-\frac{1}{2}\right)^2-1\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0\Leftrightarrow-\left(x-\frac{1}{2}\right)^2\le0\Leftrightarrow-\left(x-\frac{1}{2}\right)^2-1\le-1< 0\)
=> biểu thức luôn âm
các câu sau tương tự, nếu bạn chưa rõ thì có thể hỏi lại mình
bài 1 chứng minh rằng:
S = n.(n+5).(n-3).(n+2) luôn chia hết cho 6 với mọi số tự nhiên n
bài 2 chứng minh rằng các biểu thức sau không phụ thuộc vào phần biến
A = (x+2).(2x2 - 3x +4) - (x2 -1). (2x+1)
B= (2x-5)2 - (2x+5)2 +40x
mình cần làm ngay các bạn giải hộ mình với ai gải nhanh mình kick cho pleas
Chứng minh biểu thức sau luôn có giá trị dương với mọi giá trị của biến:
a,x^2+3x+3
b,x^2+y^2+2(x-2y)+6
c,2x^2+y^2+2x(y-1)+2
a)
\(=x^2+2.1,5x+1.5^2+0,75\)
\(=\left(x+1.5\right)^2+0,75\)
Vì (x+1.5)^2 luôn dương và 0,75 dương nên biểu thức luôn dương
b)
\(=x^2+2x+1+y^2-4y+4+1\)
\(=\left(x+1\right)^2+\left(y-2\right)^2+1\)
Lập luận tương tự câu a), được biểu thức luôn dương
c)
\(=x^2+2xy+y^2+x^2-2x+1+1\)
\(=\left(x+y\right)^2+\left(x-1\right)^2+1\)
Lập luận tương tự