cho \(a+4b⋮13\left(a,b\in N\right)\)
CMR:\(10a+b⋮13\) và ngược lại.
Chứng tỏ rằng: nếu a+4b chia hết cho 13 thì 10a + b chia hết cho 13 ( a, b thuộc N) điều ngược lại có đúng ko
10a+b\(⋮\)13
=> 4(10a+b)\(⋮\)13
=> 40a+4b\(⋮\)13
=> a+4b+39a\(⋮\)13
Mà 39a\(⋮\)13 nên a+4b\(⋮\)13
Vậy nếu 10a+b\(⋮\)13 thì a+4b\(⋮\)13
+) Chứng minh chiều xuối :
Cho a + 4b ⋮ 13 ; CMR : 10a + b ⋮ 13
Vì a + 4b ⋮ 13 => 10 . ( a + 4b ) ⋮ 13 => 10a + 40b ⋮ 13
Xét hiệu ( 10a + 40b ) - ( 10a + b ) = 39b ⋮ 13
\(\text{Vì }\hept{\begin{cases}10a+40b⋮13\\\left(10a+40b\right)-\left(10a+b\right)⋮13\end{cases}}\)
=> 10a + b ⋮ 13 (1)
+) Chứng minh chiều ngược :
Cho 10a + b ⋮ 13 ; CMR : a + 4b ⋮ 13
Vì 10a + b ⋮ 13 => 4 . ( 10b + a ) ⋮ 13 => 40a + 4b ⋮ 13
Xét hiệu : ( 40a + 4b ) - ( a + 4b ) = 39a ⋮ 13
\(\text{Vì }\hept{\begin{cases}40a + 4b ⋮ 13\\\left(40a+4b\right)-\left(a+4b\right)⋮13\end{cases}}\)
=> a + 4b ⋮ 13 (2)
Từ (1) và (2) => a + 4b ⋮ 13 <=> 10a + b ⋮ 13
a. Cho a+5b chia hết cho 17. cmr: 10a-b chia hết cho 17
b. a+4b chia hết cho 13 .cmr: 10a +b chia hết ch 13.
c. 10a +b chia hết cho 13. cmr: a+4b chia hết cho 13
cho a,b thuộc N và a + 4b chia hết cho 13
CMR : (10a + b ) chia hết cho 13
ta đặt a + 4b = x ; 10a + b = y
có x \(⋮\)13
cách 1 : xét biểu thức :
10x - y = 10 . ( a + 4b ) - ( 10a + b ) = 10a + 40b - 10a - b = 39b \(⋮\)13
vì x \(⋮\)13 nên 10x \(⋮\)13 \(\Rightarrow\)y \(⋮\)13
cách 2 : xét biểu thức :
3x + y = 3 . ( a + 4b ) + ( 10a + b ) = 3a + 12b + 10a + b = 13a + 13b = 13 . ( a + b ) \(⋮\)13
như vậy 3x + y \(⋮\)13
Mà x \(⋮\)13 nên 3x \(⋮\)13 \(\Rightarrow\)y \(⋮\)13
Cho a,b\(\in\)N. CMR: Nếu a+4b\(⋮\)13 thì \(10a+b⋮13\)
Ta có: a+4b \(⋮\)13 => 10(a+4b)\(⋮\)13
<=> 10a+40b\(⋮\)13 <=> (10a+b)+39b\(⋮\)13
Nhận thấy: 39b\(⋮\)13 với mọi b thuộc N
=> 10+b \(⋮\)13
Ta có : \(a+4b⋮13\)=> \(23\left(a+4b\right)⋮13\)
=> \(23a+92b⋮13\)=> \(\left(13a+91b\right)+\left(10a+b\right)⋮13\)
=> \(10a+b⋮13\)\(\left(do13a+91b⋮13\right)\)( đpcm )
Cho biết a+4b chia hết cho 13 (a;b thuộc N)
CMR: 10a+b chia hết cho 13
a) Giải
Ta có:
a + 5b ⋮ 7 ⇒10(a + 5b) ⋮ 7 ⇒10a + 50b ⋮ 7
Vì 49 ⋮ 7 ⇒49b ⋮ 7
⇒10a + (50b - 49b) ⋮ 7
⇒10a + b ⋮ 7
Vậy 10a + b ⋮ 7
b) Giải
Ta có:
a + 4b ⋮ 13 ⇒10(a + 4b) ⋮ 13 ⇒10a + 40b ⋮ 13
VÌ 39 ⋮ 13 ⇒39b ⋮ 13
⇒10a + (40b - 39b) ⋮ 13
⇒10a + b ⋮ 13
Vậy 10a + b ⋮ 13
Cho a + 4b chia hết cho 13.CMR: 10a + b chia hết cho 13
Ta có: a+4b chia hết cho 13
=>23.(a+4b) chia hết cho 13
=>23a+92b chia hết cho 13
=>23a+92b-13a-13.7b chia hết cho 13
=>(23a-13a)+(92b-91b) chia hết cho 13
=>10a+1 chia hết cho 13
=>ĐPCM
1 tìm n biết n-7 chia hết cho n+2
2 CMR a+4b chia hết cho 13 biết 10a+b chia hết cho 13
Cho \(a+5b⋮7\left(a,b\in\right)N.\)
\(CMR:\) \(10a+b⋮7,\)điều ngược lại có đúng ko?
cm 10a + b chia hết cho 7
ta có : a+5b chia hết cho 7 => 10(a+5b) chia hết cho 7=> 10a+50b chia hết cho 7)(1)
xét hiệu: 10a+50b-(10a+b)=49b chia hết cho 7 (2)
từ (1);(2) =>10a+b chia hết cho 7
cm a+5b chia hết cho 7
ta có 10a+b chia hết cho 7=> 5(10a+b) chia hết cho 7 => 50a+5b chia hết cho 7 (1)
xét hiệu: 50a+5b-(a+5b)=49a chia hết cho 7 (2)
từ (1);(2)=>a+5b chia hết cho 7
nhớ tích đúng cho mình nhé ahihi