đây là bài chứng minh,sao m.n lại x=1 cái j thế.
cho:x+y+z=0;x^2+y^2+z^2=1 thì ta có:x5+y5+z5=5/4(2x3 - x)
ai lm đc tui l i k e người đó 1 tháng
-_______-'' bài này là chứng minh,sao lại = 2 cái j thế mấy tên kia.
cho:x+y+z=0;x^2+y^2+z^2=1. Chứng minh x5+y5+z5=5/4 (2x3 - x)
ai thông minh nhất ở đây lm bài này hộ cái:
cho:x+y+z=0;x^2+y^2+z^2=1. Chứng minh x5+y5+z5=5/4 (2x3 - x)
1/ chứng minh rằng khi x,y,z > 0 thì \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\)
giúp mjk nha m.n!! thks m.n nhìu
áp dụng bđt cauchy:
\(\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{x}.\frac{1}{y}}=\frac{2}{\sqrt{xy}}.\)
Tượng tự \(\frac{1}{y}+\frac{1}{z}\ge\frac{2}{\sqrt{yz}},\frac{1}{z}+\frac{1}{x}\ge\frac{2}{\sqrt{xz}}.\)
=>2VT>=2Vp
<=>VT>=VP
dấu = xảy ra khi x=y=z
By AM-GM we have:
\(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}};\frac{1}{y}+\frac{1}{z}\ge\frac{2}{\sqrt{yz}};\frac{1}{x}+\frac{1}{z}\ge\frac{2}{\sqrt{xz}}\)
Cộng theo vế rồi rút gọn là có ĐPCM
Xảy ra khi x=y=z
M.n giúp mk bài này nha:
1. Có ... số có 4 chữ số sao cho khi nhân số đó với 360 ta dược số chính phương.
2. Cho các số nguyên tố x,y nguyên tố cùng nhau sao cho x.y = z2 . Chứng minh rằng x,y là các số chính phương
Bài 3: Chứng minh rằng các biểu thức sau đây bằng 0
a) x nhân (y-z)+y nhân (z-x)+ z nhân (x-y)
b)x nhân (y+z-yz)- y nhân (z+x-zx)+z nhân (y-x)
\(a,x\left(y-z\right)+y\left(z-x\right)+z\left(x-y\right)\\ =xy-xz+yz-xy+xz-yz\\ =\left(xy-xy\right)+\left(xz-xz\right)+\left(yz-yz\right)\\ =0+0+0\\ =0\left(dpcm\right)\)
\(b,x\left(y+z-yz\right)-y\left(z+x-zx\right)+z\left(y-x\right)\\ =xy+xz-xyz-yz-xy+xyz+yz-xz\\ =\left(xy-xy\right)+\left(xz-xz\right)+\left(xyz-xyz\right)+\left(yz-yz\right)\\ =0+0+0+0\\ =0\left(dpcm\right)\)
Cả cái trang wed học tập này ko giải đc bài này hay sao: Biết: 2017>|x-z|;|y-z|<1.Chứng minh rằng:|x-y|<2018 toán lớp 7.Mình ko tin
\(\left|y-z\right|< 1\)
mà \(\left|y-z\right|\ge0\)
\(\Rightarrow\)\(\left|y-z\right|=0\)
\(\Leftrightarrow\)\(y-z=0\)
\(\Leftrightarrow\)\(y=z\)
Ta có: \(\left|x-z\right|< 2017\)
\(\Leftrightarrow\)\(\left|x-y\right|< 2017\)(thay \(z=y\))
\(\Leftrightarrow\)\(\left|x-y\right|< 2017< 2018\)
\(\Leftrightarrow\)\(\left|x-y\right|< 2018\)(đpcm)
Cảm ơn bạn. Bạn giỏi và tốt quá.May có bạn, ko mình cứ nghĩ cả ngày hôm nay cứ như thằng điên ý. Cái cảm giác mà ko giải đc bài toán nó khó chụi lắm.
cái gì thế này???????????????????????????????????
mik lp 6 nhưng nhìn bài của bn mik ko hiểu j cả luôn ý
mọi n giải hộ bài này cái,đã có ai giải đâu-_______-''
cho:x+y+z=0;x^2+y^2+z^2=1. Chứng minh x5+y5+z5=5/4 (2x3 - x)
Bài 1: Chứng minh rằng (x, y, z > 0)
Bài 2: Cho a + b + c > 0; abc > 0; ab + bc + ca > 0. Chứng minh rằng a > 0; b > 0; c > 0.
Bài 3: Chứng minh rằng (a, b, c > 0)
Bài 4: Chứng minh rằng (a + b) (b + c) (c + a) 8abc (a, b, c 0)
Bài 5: Chứng minh rằng (a, b, c, d 0)
Bài 6: Cho x, y, z > 0 thỏa mãn .
Chứng minh .
Bài 7: Cho a, b, c là độ dài 3 cạnh của 1 tam giác. Chứng minh rằng (a+b-c) (b+c-a) (c+a-b) ab.
Bài 8: Cho x, y, z > 0; x+y+z = 1. Chứng minh rằng .
Bài 9: Cho 2 số có tổng không đổi. Chứng minh rằng tích của chúng lớn nhất khi và chỉ khi 2 số đó bằng nhau.
Bài 10: Cho a, b, c > 0. Chứng minh rằng
3) Đặt b+c=x;c+a=y;a+b=z.
=>a=(y+z-x)/2 ; b=(x+z-y)/2 ; c=(x+y-z)/2
BĐT cần CM <=> \(\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\ge\frac{3}{2}\)
VT=\(\frac{1}{2}\left(\frac{y}{x}+\frac{z}{x}-1+\frac{x}{y}+\frac{z}{y}-1+\frac{x}{z}+\frac{y}{z}-1\right)\)
\(=\frac{1}{2}\left[\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)-3\right]\)
\(\ge\frac{1}{2}\left(2+2+2-3\right)=\frac{3}{2}\)(Cauchy)
Dấu''='' tự giải ra nhá
Bài 4
dễ chứng minh \(\left(a+b\right)^2\ge4ab;\left(b+c\right)^2\ge4bc;\left(a+c\right)^2\ge4ac\)
\(\Rightarrow\left(a+b\right)^2\left(b+c\right)^2\left(a+c\right)^2\ge64a^2b^2c^2\)
rồi khai căn ra \(\Rightarrow\)dpcm.
đấu " = " xảy ra \(\Leftrightarrow\)\(a=b=c\)
bài 1 \(\left(\frac{x}{y}\right)^2+\left(\frac{y}{z}\right)^2\ge2\times\frac{x}{y}\times\frac{y}{z}=2\frac{x}{z}\)
làm tương tự rồi cộng các vế các bất đẳng thức lại với nhau ta có dpcm ( cộng xong bạn đặt 2 ra ngoài ý, mk ngại viết nhiều hhehe)