cho đường thẳng d cố định, điểm A cố định nằm ngoài đường thẳng . Điểm B thay đổi trên đường thẳng d. Trên ab lấy M sao cho ma=2mb. Hỏi khi b thay đổi trên d thì m di chuyển trên đường nào?
Cho đường tròn tâm O bán kính R và đường thẳng d cắt đường tròn tại C và D, 1 điểm M di động trên d sao cho MC>MD và nằm ngoài đường tròn. Qua M kẻ tiếp tuyến MA và MB, gọi H là trung điểm CD, giao điểm AB với MO và MH lần lượt là E và F
a)CMR: OE.OM ko đổi.
b) CM đường thẳng d luôn đi qua điểm cố định khi M thay đổi trên d.
Cho (O; R) , một đường thẳng d cắt đường tròn (O) tại C và D, lấy điểm M trên đường thẳng d sao cho D nằm giữa C và M, Qua M vẽ tiếp tuyến MA, MB với đường tròn . Gọi H là trung điểm của CD, OM cắt AB tại E. Chứng minh rằng:
a) AB vuông góc với OM.
b) Tích OE . OM không đổi.
c) Khi M di chuyển trên đường thẳng d thì đường thẳng AB đi qua một điểm cố định.
a) theo tính chất của hai tiếp tuyến cắt nhau , ta có :
AM = MB
Mà OA = OB ( = R )
\(\Rightarrow\)OM thuộc đường trung trực của AB
\(\Rightarrow\)OM \(\perp\)AB
b) Áp dụng hệ thức lượng vào \(\Delta AOM\),ta có :
\(OE.OM=OA^2=R^2\) ( không đổi i)
c) gọi F là giao điểm của AB với OH
Xét \(\Delta OEF\)và \(\Delta OHM\)có :
\(\widehat{HOE}\left(chung\right)\); \(\widehat{OEF}=\widehat{OHM}\left(=90^o\right)\)
\(\Rightarrow\Delta OEF~\Delta OHM\left(g.g\right)\)
\(\Rightarrow\frac{OE}{OH}=\frac{OF}{OM}\Rightarrow OF.OH=OE.OM=R^2\Rightarrow OF=\frac{R^2}{OH}\)
Do đường thẳng d cho trước nên OH không đổi
\(\Rightarrow\)OF không đổi
Do đó đường thẳng AB luôn đi điểm F cố định
Cho (O;R), đường thẳng d cắt đường tròn (O) tại C và D, lấy M trên đường thẳng d sao cho D nằm giữa C và M. Qua M vẽ tiếp tuyến MA, MB với đường tròn. Gọi H là trung điểm của CD, OM cắt AB tại E. CMR :
a) AB vuông góc OM
b) Tích OF.OM không đổi.
c) Khi M di chuyển trên đường thẳng d thì đường thẳng AB đi qua một điểm cố định.
Cho (O;R) và một đường thẳng d cố định cắt đường tròn (O) tại C va D, trên đường thẳng lấy điểm M sao cho D nằm giữa M và C. Qua điểm M vẽ các tiếp tuyến MA, MB với đường tròn (A,B là các tiếp điểm). Gọi H là trung điểm của CD, OM cắt AB tại E. Chứng minh rằng :
a. Bốn điểm O,B,M,H cùng nằm trên một đường tròn
b. ME ⊥ AB
c. Tích OE.Om không đổi và đường thẳng AB luôn đi qua điểm cố định khi điểm M di động trên đường thẳng d
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Cho (O;R), một đường thẳng d cắt đường tròn (O) tại C và D.Lấy điểm M trên đường thẳng d sao cho D nằm giữa C và M.Qua M ve tiếp tuyến MA,MB với đường tròn.Gọi H là trung điểm CD,OM cắt AB tại E.CMR:
a)AB vuông góc với OM
b)Tích OE.OM không đổi
c)Khi M di chuyển trên đường thẳng d thì đường thẳng AB đi qua 1 điểm cố định
Cho H là một điểm cố định trên đường thẳng AB. Gọi d là đường thẳng qua H và vuông góc với AB. Lấy M di động trên d.
a. Chứng minh rằng M thay đổi thì MA2 - MB2 không đổi.
b. Lấy điểm N bất kì thỏa mãn NA2 - NB2 = HA2 - HB2. Chứng minh rằng N thuộc d
Cho tam giác ABC vuông tại A với AB =AC =a
a/ lấy điểm D trên cạnh AC và điểm E trên cạnh AB sao cho AD=AE. Các đường thẳng vuông góc với EC vẽ từ A và D lần lượt cắt BC ở K và L. C/m BK=KL
b/ Một hình chữ nhật APMN thay đổi có đỉnh P trên cạnh AB , đinh N trên cẠnh AC vaâ có chu vi luôn =2a . Điểm M di chuyển trên đường thẳng nào DS M di chuyển trên BC
c/ C/m khi hình chữ nhật APMN thay đổi thì đường vuông góc vẽ từ M xuống đường chéo PN luôn đi qua 1 điểm cố định
DS: HM đi qua điểm I cố định ( voi ACIB là hình vuông)
cho đường tròn tâm O, đường thẳng d cố định nằm ngoài đường tròn, M di động trên đường thẳng d, kẻ 2 tiếp tuyến MA và MB với đường tròn (O;R), OM cắt AB tại I.
a) chứng minh tích OI.OM không đổi
b) Tìm vị trí của M để tam giác MAB đều
c) Chứng minh rằng khi M di động trên d thì AB luôn đi qua một điểm cố định
cho đường tròn (O;R), đường thẳng d cố định và không giao nhau với đường tròn . Từ điểm M tùy ý trên d, kẻ 2 tiếp tuyến MA,MB với (O)(A,B thuộc đường tròn tâm O).Kẻ Oh vuông góc với d tại H. Day cung AB cắt OH tại I,cắt MO tại K.
a)chứng minh rằng :OI.OH=OK.OM
b)Khi M thay đổi trên d thì điểm K di chuyển trên đường nào
a) MA và MB là hai tiếp tuyến từ M đến (O) nên MA = MB => OM là trung trực của AB
=> OM vuông góc AB (tại K) => ^OKI = ^OHM = 900 => \(\Delta\)OKI ~ \(\Delta\)OHM (g.g)
Vậy OI.OH = OK.OM (đpcm).
b) Áp dụng hệ thức lượng trong tam giác vuông có: OI.OH = OK.OM = OA2 = R2 (Không đổi)
Vì d cố định, O cố định nên khoảng cách từ O tới d không đổi hay OH không đổi
Do vậy \(OI=\frac{R^2}{OH}=const\)=> Đường tròn (OI) cố định
Mà K thuộc (OI) (vì ^OKI nhìn đoạn IO dưới góc 900) nên K di chuyển trên (OI) cố định (đpcm).
const là gì mình chưa biết ban giải thích cái đó được không?
const là hằng số